scispace - formally typeset
Search or ask a question
Author

Vanessa Sherlock

Other affiliations: Wellington Management Company
Bio: Vanessa Sherlock is an academic researcher from National Institute of Water and Atmospheric Research. The author has contributed to research in topics: Total Carbon Column Observing Network & SCIAMACHY. The author has an hindex of 29, co-authored 46 publications receiving 4045 citations. Previous affiliations of Vanessa Sherlock include Wellington Management Company.

Papers
More filters
Journal ArticleDOI
TL;DR: The TCCON provides a link between satellite measurements and the extensive ground-based in situ network and achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations.
Abstract: A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO_2, CO, CH_4, N_(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remotesensing observations (better than 0.25% for CO_2). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.

768 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a calibration of TCCON data using WMO-scale in-strumentation aboard aircraft that measured profiles over four Total Carbon Column Observing Network (TCCON) stations.
Abstract: The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column av- erage dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with suffi- cient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Orga- nization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale in- strumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. These calibrations are compared with similar observations made in 2004 and 2006. The results indicate that a single, global calibration factor for each gas accurately captures the TCCON total col- umn data within error.

368 citations

Journal ArticleDOI
TL;DR: In this paper, a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) are analyzed to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs).
Abstract: The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity. Copyright © 2012 by the American Geophysical Union.

292 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed an approach for representing synoptic and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3), disaggregated monthly GFED3 emissions during 2003-2009 to a daily time step using MODIS-derived measurements of active fires from Terra and Aqua satellites.
Abstract: Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003–2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

271 citations

Journal ArticleDOI
TL;DR: In this paper, a method of evaluating systematic errors in measurements of total column dry-air mole fractions of CO2 (XCO2) from space is described, and applied to the v2.8 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing Satellite (ACOS-GOSAT) measurements over land.
Abstract: . We describe a method of evaluating systematic errors in measurements of total column dry-air mole fractions of CO2 (XCO2) from space, and we illustrate the method by applying it to the v2.8 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing Satellite (ACOS-GOSAT) measurements over land. The approach exploits the lack of large gradients in XCO2 south of 25° S to identify large-scale offsets and other biases in the ACOS-GOSAT data with several retrieval parameters and errors in instrument calibration. We demonstrate the effectiveness of the method by comparing the ACOS-GOSAT data in the Northern Hemisphere with ground truth provided by the Total Carbon Column Observing Network (TCCON). We use the observed correlation between free-tropospheric potential temperature and XCO2 in the Northern Hemisphere to define a dynamically informed coincidence criterion between the ground-based TCCON measurements and the ACOS-GOSAT measurements. We illustrate that this approach provides larger sample sizes, hence giving a more robust comparison than one that simply uses time, latitude and longitude criteria. Our results show that the agreement with the TCCON data improves after accounting for the systematic errors, but that extrapolation to conditions found outside the region south of 25° S may be problematic (e.g., high airmasses, large surface pressure biases, M-gain, measurements made over ocean). A preliminary evaluation of the improved v2.9 ACOS-GOSAT data is also discussed.

259 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses as mentioned in this paper.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,572 citations

Book ChapterDOI
01 Jan 2014
TL;DR: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2 as discussed by the authors, which is at least 2 times larger than the rate of natural terrestrial creation of ~58 Tg N (50 to 100 Tg nr yr−1) (Table 6.9, Section 1a).
Abstract: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2. This human-caused creation of reactive nitrogen in 2010 is at least 2 times larger than the rate of natural terrestrial creation of ~58 TgN (50 to 100 TgN yr−1) (Table 6.9, Section 1a). Note that the estimate of natural terrestrial biological fixation (58 TgN yr−1) is lower than former estimates (100 TgN yr−1, Galloway et al., 2004), but the ranges overlap, 50 to 100 TgN yr−1 vs. 90 to 120 TgN yr−1, respectively). Of this created reactive nitrogen, NOx and NH3 emissions from anthropogenic sources are about fourfold greater than natural emissions (Table 6.9, Section 1b). A greater portion of the NH3 emissions is deposited to the continents rather than to the oceans, relative to the deposition of NOy, due to the longer atmospheric residence time of the latter. These deposition estimates are lower limits, as they do not include organic nitrogen species. New model and measurement information (Kanakidou et al., 2012) suggests that incomplete inclusion of emissions and atmospheric chemistry of reduced and oxidized organic nitrogen components in current models may lead to systematic underestimates of total global reactive nitrogen deposition by up to 35% (Table 6.9, Section 1c). Discharge of reactive nitrogen to the coastal oceans is ~45 TgN yr−1 (Table 6.9, Section 1d). Denitrification converts Nr back to atmospheric N2. The current estimate for the production of atmospheric N2 is 110 TgN yr−1 (Bouwman et al., 2013).

1,967 citations

Journal ArticleDOI
TL;DR: In this paper, the authors construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions.
Abstract: Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. © 2013 Macmillan Publishers Limited.

1,668 citations

Journal ArticleDOI
TL;DR: The Global Fire Emissions Database (GFED) as mentioned in this paper has been used to quantify global fire emissions patterns during 1997-2016, with the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia.
Abstract: . Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 × 1015 grams of carbon per year (Pg C yr−1) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1) and minimum in 2013 (1.8 Pg C yr−1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr−1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org .

1,135 citations

Journal ArticleDOI
Marielle Saunois1, Ann R. Stavert2, Ben Poulter3, Philippe Bousquet1, Josep G. Canadell2, Robert B. Jackson4, Peter A. Raymond5, Edward J. Dlugokencky6, Sander Houweling7, Sander Houweling8, Prabir K. Patra9, Prabir K. Patra10, Philippe Ciais1, Vivek K. Arora, David Bastviken11, Peter Bergamaschi, Donald R. Blake12, Gordon Brailsford13, Lori Bruhwiler6, Kimberly M. Carlson14, Mark Carrol3, Simona Castaldi15, Naveen Chandra10, Cyril Crevoisier16, Patrick M. Crill17, Kristofer R. Covey18, Charles L. Curry19, Giuseppe Etiope20, Giuseppe Etiope21, Christian Frankenberg22, Nicola Gedney23, Michaela I. Hegglin24, Lena Höglund-Isaksson25, Gustaf Hugelius17, Misa Ishizawa26, Akihiko Ito26, Greet Janssens-Maenhout, Katherine M. Jensen27, Fortunat Joos28, Thomas Kleinen29, Paul B. Krummel2, Ray L. Langenfelds2, Goulven Gildas Laruelle, Licheng Liu30, Toshinobu Machida26, Shamil Maksyutov26, Kyle C. McDonald27, Joe McNorton31, Paul A. Miller32, Joe R. Melton, Isamu Morino26, Jurek Müller28, Fabiola Murguia-Flores33, Vaishali Naik34, Yosuke Niwa26, Sergio Noce, Simon O'Doherty33, Robert J. Parker35, Changhui Peng36, Shushi Peng37, Glen P. Peters, Catherine Prigent, Ronald G. Prinn38, Michel Ramonet1, Pierre Regnier, William J. Riley39, Judith A. Rosentreter40, Arjo Segers, Isobel J. Simpson12, Hao Shi41, Steven J. Smith42, L. Paul Steele2, Brett F. Thornton17, Hanqin Tian41, Yasunori Tohjima26, Francesco N. Tubiello43, Aki Tsuruta44, Nicolas Viovy1, Apostolos Voulgarakis45, Apostolos Voulgarakis46, Thomas Weber47, Michiel van Weele48, Guido R. van der Werf7, Ray F. Weiss49, Doug Worthy, Debra Wunch50, Yi Yin1, Yi Yin22, Yukio Yoshida26, Weiya Zhang32, Zhen Zhang51, Yuanhong Zhao1, Bo Zheng1, Qing Zhu39, Qiuan Zhu52, Qianlai Zhuang30 
Université Paris-Saclay1, Commonwealth Scientific and Industrial Research Organisation2, Goddard Space Flight Center3, Stanford University4, Yale University5, National Oceanic and Atmospheric Administration6, VU University Amsterdam7, Netherlands Institute for Space Research8, Chiba University9, Japan Agency for Marine-Earth Science and Technology10, Linköping University11, University of California, Irvine12, National Institute of Water and Atmospheric Research13, New York University14, Seconda Università degli Studi di Napoli15, École Polytechnique16, Stockholm University17, Skidmore College18, University of Victoria19, National Institute of Geophysics and Volcanology20, Babeș-Bolyai University21, California Institute of Technology22, Met Office23, University of Reading24, International Institute for Applied Systems Analysis25, National Institute for Environmental Studies26, City University of New York27, University of Bern28, Max Planck Society29, Purdue University30, European Centre for Medium-Range Weather Forecasts31, Lund University32, University of Bristol33, Geophysical Fluid Dynamics Laboratory34, University of Leicester35, Université du Québec à Montréal36, Peking University37, Massachusetts Institute of Technology38, Lawrence Berkeley National Laboratory39, Southern Cross University40, Auburn University41, Joint Global Change Research Institute42, Food and Agriculture Organization43, Finnish Meteorological Institute44, Technical University of Crete45, Imperial College London46, University of Rochester47, Royal Netherlands Meteorological Institute48, Scripps Institution of Oceanography49, University of Toronto50, University of Maryland, College Park51, Hohai University52
TL;DR: The second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations) as discussed by the authors.
Abstract: Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.

1,047 citations