scispace - formally typeset
Search or ask a question
Author

Vardha N. Bennert

Bio: Vardha N. Bennert is an academic researcher from California Polytechnic State University. The author has contributed to research in topics: Galaxy & Active galactic nucleus. The author has an hindex of 47, co-authored 116 publications receiving 7294 citations. Previous affiliations of Vardha N. Bennert include University of California, Riverside & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an updated and revised analysis of the relationship between the H{beta} broadline region (BLR) radius and the luminosity of the active galactic nucleus (AGN).
Abstract: We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19more » {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.« less

795 citations

Journal ArticleDOI
TL;DR: In this paper, a 64-night spectroscopic monitoring campaign at the Lick Observatory 3m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0: 05) Seyfert 1 galaxies with expected masses in the range of 10 6 -10 7, and also the well-studied nearby active galactic nucleus (AGN) NGC 5548.
Abstract: We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0: 05) Seyfert 1 galaxies with expected masses in the range � 10 6 -10 7 Mand also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to all ow for a time lag to be measured between the continuum fluctuations and the response to these fluctuation s in the broad Hemission. We present here the light curves for all the objects in this sample and the subseq uent Htime lags for the nine objects where these measurements were possible. The Hlag time is directly related to the size of the broad-line reg ion in AGNs, and by combining the Hlag time with the measured width of the Hemission line in the variable part of the spectrum, we determine the virial mass of the central sup ermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al., which brings the masses determined by reverberation mapping into agreement with the local MBH -�? relationship for quiescent galaxies. We also examine the time lag response as a function of velocity across the Hline profile for six of the AGNs. The analysis of four leads to rather ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad -line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple g ravitational infall model. Further investigation will be necessary to fully understand the constraints place d on physical models of the BLR by the velocity- resolved response in these objects. Subject headings:galaxies: active - galaxies: nuclei - galaxies: Seyfert

451 citations

Journal ArticleDOI
09 Aug 2019-Science
TL;DR: In this paper, the authors reported the interferometric localization of the single-pulse fast radio burst (FRB 180924) to a position 4 kiloparsecs from the center of a luminous galaxy at redshift 0.3214.
Abstract: Fast radio bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Nonrepeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single-pulse FRB 180924 to a position 4 kiloparsecs from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from those of the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web.

357 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which they have recently determined black hole masses using reverberation mapping, and derived an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH-σ* relation of quiescent galaxies.
Abstract: To investigate the black hole mass versus stellar velocity dispersion (MBH-σ*) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼ 8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 106 < MBH/M⊙ < 109. We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the MBH-σ* relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σint = 0.43 ± 0.08 dex in the relation log(MBH/M⊙) = α + β log(σ*/200kms-1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH-σ* relation of quiescent galaxies; using the quiescent MBH-σ* relation determined by Gultekin etal., we find log f = 0.72 +0.09-0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determinations using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies. © 2010 The American Astronomical Society.

321 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which they have recently determined MBH using reverberation mapping.
Abstract: (Abridged) To investigate the black hole mass (MBH) vs. stellar velocity dispersion relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined MBH using reverberation mapping. For most objects, velocity dispersions were measured from high S/N ratio optical spectra centered on the Ca II triplet region (~8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OSIRIS at the Keck-II Telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based MBH measurements in the range of black hole mass 10^6

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Posted Content
TL;DR: Kormendy and Ho as mentioned in this paper proposed a method to estimate the BH masses for galaxies with active nuclei (AGNs) based on the observational criteria that are used to classify classical and pseudo bulges.
Abstract: This is the Supplemental Material to Kormendy and Ho 2013, ARAA, 51, 511 (arXiv:1304.7762). Section S1 summarizes indirect methods that are used to estimate black hole (BH) masses for galaxies with active nuclei (AGNs). Section S2 lists the observational criteria that are used to classify classical and pseudo bulges. The (pseudo)bulge classifications used in the main paper are not based on physical interpretation; rather, they are based on these observational criteria. Section S3 supplements the BH database in Section 5 of the main paper and Section S4 here. It discusses corrections to galaxy and BH parameters, most importantly to 2MASS K-band apparent magnitudes. It presents evidence that corrections are needed because 2MASS misses light at large radii when the images of galaxies subtend large angles on the sky or have shallow outer brightness gradients. Section S4 reproduces essentially verbatim the first part of Section 5 in the main paper, the BH database. It includes the list of BH and host-galaxy properties (Tables 2 and 3). Its most important purpose is to provide all of the notes on individual objects.

1,774 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a compilation of properties of 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog, including radio properties, and flags indicating broad absorption line properties.
Abstract: We present a compilation of properties of the 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog. In this product, we compile continuum and emission line measurements around the Hα, Hβ, Mg II, and C IV regions, as well as other quantities such as radio properties, and flags indicating broad absorption line quasars, disk emitters, etc. We also compile virial black hole mass estimates based on various calibrations. For the fiducial virial mass estimates we use the Vestergaard & Peterson (VP06) calibrations for Hβ and C IV, and our own calibration for Mg II which matches the VP06 Hβ masses on average. We describe the construction of this catalog and discuss its limitations. The catalog and its future updates will be made publicly available online.

1,486 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux.
Abstract: After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained bymore » a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less

1,473 citations