scispace - formally typeset
Search or ask a question
Author

Varun Jayeshkumar Shah

Bio: Varun Jayeshkumar Shah is an academic researcher from Goethe University Frankfurt. The author has contributed to research in topics: Cancer & Functional genomics. The author has an hindex of 1, co-authored 3 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: 3Cs multiplexing as mentioned in this paper is a scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries with low distribution skews, and it has been shown that the library distribution skew is critical determinant of its required screening coverage.
Abstract: Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.

15 citations

Journal ArticleDOI
04 Oct 2021-Cells
TL;DR: In this article, the authors discuss the emerging role of USP28 in cancer and discuss the complexity and mutational landscape of squamous tumors, as well as the genetic alterations and cellular pathways that determine the function of USp28 in squamous cancer.
Abstract: Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.

12 citations

Posted ContentDOI
28 Jul 2020-bioRxiv
TL;DR: This work established 3Cs multiplexing for the generation of combinatorial gRNA libraries in a distribution-unbiased manner and provides experimental evidence that gene-associated categories of phenotypic strengths exist in autophagy.
Abstract: Functional genomics studies in model organisms and human cell lines provided important insights into gene functions and their context-dependent role in genetic circuits. However, our functional understanding of many of these genes and how they combinatorically regulate key biological processes, remains limited. To enable the SpCas9-dependent mapping of gene-gene interactions in human cells, we established 3Cs multiplexing for the generation of combinatorial gRNA libraries in a distribution-unbiased manner and demonstrate its robust performance. The optimal number for combinatorial hit calling was 16 gRNA pairs and the skew of a library’s distribution was identified as a critical parameter dictating experimental scale and data quality. Our approach enabled us to investigate 247,032 gRNA-pairs targeting 12,736 gene-interactions in human autophagy. We identified novel genes essential for autophagy and provide experimental evidence that gene-associated categories of phenotypic strengths exist in autophagy. Furthermore, circuits of autophagy gene interactions reveal redundant nodes driven by paralog genes. Our combinatorial 3Cs approach is broadly suitable to investigate unexpected gene-interaction phenotypes in unperturbed and diseased cell contexts.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment can be found in this article .
Abstract: Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.

93 citations

Journal ArticleDOI
TL;DR: Bock et al. as mentioned in this paper described the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development, with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.
Abstract: CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development — with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen. CRISPR screening is a high-throughput approach for identifying genes, pathways and mechanisms involved in a given phenotype or biological process. High-content read-outs of these screens, such as imaging and single-cell sequencing techniques, have further broadened its applicability. This Primer by Bock et al. describes the main concepts of CRISPR screening and gives examples of its application as a method for biological discovery, with a focus on the use of high-content read-outs.

64 citations

Journal ArticleDOI
TL;DR: Using the mouse as the model organism, a range of CRISPR tools and applications are introduced, general considerations for 'transplantation-based' or 'direct in vivo' screening design are delineated, and details on technical execution, sequencing readouts, computational analyses and data interpretation are provided.

7 citations

Journal ArticleDOI
23 Sep 2022-Cancers
TL;DR: Research progress on the MAPK signaling pathway and its potential therapeutic mechanisms are reviewed and its molecular targeting technologies combined with immune checkpoint therapies to provide new therapeutic strategies for oral squamous cell carcinoma are discussed.
Abstract: Simple Summary The aim of the present review was to summarize our studies on the signaling pathways in cancer types that are involved in the development of oral cancer and several mitogen-activated protein kinase-related molecular targeting technologies combined with immune checkpoint therapies to provide new therapeutic strategies for oral squamous cell carcinoma. In addition, we have provided a reasonable outlook, with a systematic basis, for future diagnosis and accurate treatment. Abstract Oral squamous cell carcinoma accounts for 95% of human head and neck squamous cell carcinoma cases. It is highly malignant and aggressive, with a poor prognosis and a 5-year survival rate of <50%. In recent years, basic and clinical studies have been performed on the role of the mitogen-activated protein kinase (MAPK) signaling pathway in oral cancer. The MAPK signaling pathway is activated in over 50% of human oral cancer cases. Herein, we review research progress on the MAPK signaling pathway and its potential therapeutic mechanisms and discuss its molecular targeting to explore its potential as a therapeutic strategy for oral squamous cell carcinoma.

5 citations