scispace - formally typeset
Search or ask a question
Author

Varun Sahni

Other affiliations: University of Toronto
Bio: Varun Sahni is an academic researcher from Inter-University Centre for Astronomy and Astrophysics. The author has contributed to research in topics: Dark energy & Cosmological constant. The author has an hindex of 49, co-authored 113 publications receiving 15514 citations. Previous affiliations of Varun Sahni include University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review both observational and theoretical aspects of a small cosmological Λ-term and discuss the current observational situation focusing on cosmology tests of Λ including the age of the universe, high redshift supernovae, gravitational lensing, galaxy clustering and the cosmic microwave background.
Abstract: Recent observations of Type 1a supernovae indicating an accelerating universe have once more drawn attention to the possible existence, at the present epoch, of a small positive Λ-term (cosmological constant). In this paper we review both observational and theoretical aspects of a small cosmological Λ-term. We discuss the current observational situation focusing on cosmological tests of Λ including the age of the universe, high redshift supernovae, gravitational lensing, galaxy clustering and the cosmic microwave background. We also review the theoretical debate surrounding Λ: the generation of Λ in models with spontaneous symmetry breaking and through quantum vacuum polarization effects — mechanisms which are known to give rise to a large value of Λ hence leading to the "cosmological constant problem." More recent attempts to generate a small cosmological constant at the present epoch using either field theoretic techniques, or by modelling a dynamical Λ-term by scalar fields are also extensively discussed. Anthropic arguments favouring a small Λ-term are briefly reviewed. A comprehensive bibliography of recent work on Λ is provided.

2,531 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review both observational and theoretical aspects of a small cosmological Lambda-term and discuss the current observational situation focusing on cosmology tests of Lambda including the age of the universe, high redshift supernovae, gravitational lensing, galaxy clustering and the cosmic microwave background.
Abstract: Recent observations of Type 1a supernovae indicating an accelerating universe have once more drawn attention to the possible existence, at the present epoch, of a small positive Lambda-term (cosmological constant). In this paper we review both observational and theoretical aspects of a small cosmological Lambda-term. We discuss the current observational situation focusing on cosmological tests of Lambda including the age of the universe, high redshift supernovae, gravitational lensing, galaxy clustering and the cosmic microwave background. We also review the theoretical debate surrounding Lambda: the generation of Lambda in models with spontaneous symmetry breaking and through quantum vacuum polarization effects -- mechanisms which are known to give rise to alarge value of Lambda hence leading to the `cosmological constant problem'. More recent attempts to generate a small cosmological constant at the present epoch using either field theoretic techniques, or by modeling a dynamical Lambda-term by scalar fields are also extensively discussed. Anthropic arguments favouring a small cosmological constant are briefly reviewed. A comprehensive bibliography of recent work on Lambda is provided.

2,099 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the Statefinder diagnostic can effectively differentiate between different forms of dark energy and can be determined to very high accuracy from a SNAP-type experiment.
Abstract: We introduce a new cosmological diagnostic pair {r, s} called the Statefinder. The Statefinder is a geometrical diagnostic and allows us to characterize the properties of dark energy in a model-independent manner. The Statefinder is dimensionless and is constructed from the scale factor of the Universe and its time derivatives only. The parameter r forms the next step in the hierarchy of geometrical cosmological parameters after the Hubble parameter H and the deceleration parameter q, while a is a linear combination of q and r chosen in such a way that it does not depend upon the dark energy density. The Statefinder pair {r, s} is algebraically related to the equation of state of dark energy and its first time derivative. The Statefinder pair is calculated for a number of existing models of dark energy having both constant and variable w. For the case of a cosmological constant, the Statefinder acquires a particularly simple form. We demonstrate that the Statefinder diagnostic can effectively differentiate between different forms of dark energy. We also show that the mean Statefinder pair can be determined to very high accuracy from a SNAP-type experiment.

1,204 citations

Journal ArticleDOI
TL;DR: A review of recent attempts to reconstruct the expansion history of the universe and to probe the nature of dark energy can be found in this article, where the authors classify reconstruction methods into parametric and non-parametric approaches.
Abstract: This review summarizes recent attempts to reconstruct the expansion history of the universe and to probe the nature of dark energy. Reconstruction methods can be broadly classified into parametric and non-parametric approaches. It is encouraging that, even with the limited observational data currently available, different approaches give consistent results for the reconstruction of the Hubble parameter H(z) and the effective equation of state w(z) of dark energy. Model independent reconstruction using current data allows for modest evolution of dark energy density with redshift. However, a cosmological constant (= dark energy with a constant energy density) remains an excellent fit to the data. Some pitfalls to be guarded against during cosmological reconstruction are summarized and future directions for the model independent reconstruction of dark energy are explored.

788 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the statefinder diagnostic in the light of the proposed SuperNova Acceleration Probe (SNAP) satellite, which is expected to observe about 2000 supernovae per year.
Abstract: The coming few years are likely to witness a dramatic increase in high-quality supernova data as current surveys add more high-redshift supernovae to their inventory and as newer and deeper supernova experiments become operational. Given the current variety in dark energy models and the expected improvement in observational data, an accurate and versatile diagnostic of dark energy is the need of the hour. This paper examines the statefinder diagnostic in the light of the proposed SuperNova Acceleration Probe (SNAP) satellite, which is expected to observe about 2000 supernovae per year. We show that the statefinder is versatile enough to differentiate between dark energy models as varied as the cosmological constant on one hand, and quintessence, the Chaplygin gas and braneworld models, on the other. Using SNAP data, the statefinder can distinguish a cosmological constant (w = -1) from quintessence models with w ≥ -0.9 and Chaplygin gas models with κ ≤ 15 at the 3a level if the value of Ω m is known exactly. The statefinder gives reasonable results even when the value of Ω m is known to only ∼20 per cent accuracy. In this case, marginalizing over Ω m and assuming a fiducial A-cold dark matter (LCDM) model allows us to rule out quintessence with w ≥ -0.85 and the Chaplygin gas with κ ≤ 7 (both at 3σ). These constraints can be made even tighter if we use the statefinders in conjunction with the deceleration parameter. The statefinder is very sensitive to the total pressure exerted by all forms of matter and radiation in the Universe. It can therefore differentiate between dark energy models at moderately high redshifts of z ≤ 10.

775 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
Abstract: We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.

5,954 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations

Journal ArticleDOI
TL;DR: A review of dark energy can be found in this paper, where the authors present the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.
Abstract: Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein's cosmological constant, \ensuremath{\Lambda}; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant \ensuremath{\Lambda}. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lema\^{\i}tre model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein--de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

4,783 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations