scispace - formally typeset
Search or ask a question
Author

Vasileios Stolakis

Other affiliations: University of Ioannina
Bio: Vasileios Stolakis is an academic researcher from National and Kapodistrian University of Athens. The author has contributed to research in topics: Offspring & Na+/K+-ATPase. The author has an hindex of 8, co-authored 18 publications receiving 197 citations. Previous affiliations of Vasileios Stolakis include University of Ioannina.

Papers
More filters
Journal ArticleDOI
TL;DR: The data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way and the TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity.
Abstract: The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

51 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of gestational exposure to cadmium (Cd) on crucial brain enzyme activities of Wistar rat offspring, as well as assess the potential protective/restorative role that a Cd-free lactation might have on these effects.

22 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the literature concerning the regulatory role of NT on the hypothalamic-anterior pituitary axons, with an emphasis on the control of thyroid-related functions is provided.

18 citations

Journal ArticleDOI
TL;DR: Investigation of how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+, K+)- and Mg2+-ATPase in the hypothalamus and the cerebellum of adult rats found neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities.
Abstract: Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+, K+)- and Mg2+-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25μg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (−23%, p < 0.001) and the Na+, K+-ATPase activities (−26%, p < 0.001). Moreover, hypothyroidism had a similar effect on the examined enzyme activities: AChE (−17%, p < 0.001) and Na+, K+-ATPase (−27%, p < 0.001). Mg2+-ATPase activity was found unaltered in both the hyper- and the hypothyroid brain regions. In conclusion: neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na+, K+-ATPase activities. The decreased (by the THs) Na+, K+-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.

16 citations

Journal ArticleDOI
TL;DR: Maternal exposure to Cd during both gestation and lactation results into significant changes in the activities of acetylcholinesterase and Na+,K+-ATPase in the frontal cortex and the cerebellum of the offspring rats, as well as in a significant increase in the hippocampal Mg2+-atinase activity.
Abstract: Cadmium (Cd) is an environmental contaminant known to exert significant neurotoxic effects on both humans and experimental animals. The aim of this study was to shed more light on the effects of gestational (in utero) and lactational maternal exposure to Cd (50 ppm of Cd as Cd-chloride in the drinking water) on crucial brain enzyme activities in important rat offspring brain regions (frontal cortex, hippocampus, hypothalamus, pons and cerebellum). Our study provides a brain region-specific view of the changes in the activities of three crucial brain enzymes as a result of the developmental neurotoxicity of Cd. Maternal exposure to Cd during both gestation and lactation results into significant changes in the activities of acetylcholinesterase and Na(+),K(+)-ATPase in the frontal cortex and the cerebellum of the offspring rats, as well as in a significant increase in the hippocampal Mg(2+)-ATPase activity. These brain-region-specific findings underline the need for further research in the field of Cd-induced developmental neurotoxicity. Deeper understanding of the mechanisms underlying the neurodevelopmental deficits taking place due to in utero and early age exposure to Cd could shed more light on the causes of its well-established cognitive implications.

16 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
C. Richard Fleming1

330 citations

Journal ArticleDOI
TL;DR: The choice of a suitable animal model for this disease while respecting its limitations may help to improve the understanding of its complex pathogenesis and to discover appropriate therapeutic strategies.
Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and it persists at a high prevalence. NAFLD is characterised by the accumulation of triglycerides in the liver and includes a spectrum of histopathological findings, ranging from simple fatty liver through non-alcoholic steatohepatitis (NASH) to fibrosis and ultimately cirrhosis, which may progress to hepatocellular carcinoma. The pathogenesis of NAFLD is closely related to the metabolic syndrome and insulin resistance. Understanding the pathophysiology and treatment of NAFLD in humans has currently been limited by the lack of satisfactory animal models. The ideal animal model for NAFLD should reflect all aspects of the intricate etiopathogenesis of human NAFLD and the typical histological findings of its different stages. Within the past several years, great emphasis has been placed on the development of an appropriate model for human NASH. This paper reviews the widely used experimental models of NAFLD in rats. We discuss nutritional, genetic and combined models of NAFLD and their pros and cons. The choice of a suitable animal model for this disease while respecting its limitations may help to improve the understanding of its complex pathogenesis and to discover appropriate therapeutic strategies. Considering the legislative, ethical, economical and health factors of NAFLD, animal models are essential tools for the research of this disease.

150 citations

Journal ArticleDOI
TL;DR: The hypothyroid status during pregnancy and lactation produced inhibitory effects on monoamines, AchE and ATPases and excitatory actions on GABA in different brain regions of the offspring while the hyperthyroid state induced a reverse effect.

146 citations

Journal ArticleDOI
06 Apr 1964-JAMA
TL;DR: The authors present the accumulated experience from the thyroid clinic and ancillary facilities of the Massachusetts General Hospital, projected against the background of a critically selected segment of the vast relevant literature, to focus on the patient.
Abstract: The authors present the accumulated experience from the thyroid clinic and ancillary facilities of the Massachusetts General Hospital, projected against the background of a critically selected segment of the vast relevant literature. Now in the third edition, the volume includes the bulk of available information—factual, theoretical, and didactic—brought to focus on the patient. Diseases of the thyroid are discussed in detail sufficient to present a rich source of information to the clinician, whatever his field of practice. Therapy is modern. The choices available are carefully and conservatively weighed and the present usages in the MGH clinics outlined. The chapter indicating the relation to the thyroid of essentially non-thyroidal diseases is especially useful in orienting the clinician to the contribution of this gland to the general body economy. The authors do not distinguish sharply between the multinodular goiter resulting from an earlier colloid goiter, and the nodular goiter related

141 citations