scispace - formally typeset
Search or ask a question
Author

Veaceslav Coropceanu

Bio: Veaceslav Coropceanu is an academic researcher from University of Arizona. The author has contributed to research in topics: Organic solar cell & Density functional theory. The author has an hindex of 37, co-authored 71 publications receiving 13102 citations. Previous affiliations of Veaceslav Coropceanu include University of Michigan & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Abstract: 2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The Orthogonality Issue 937 3.1.3. Impact of the Site Energy 937 3.1.4. Electronic Coupling in Oligoacene Derivatives 938

3,635 citations

Journal ArticleDOI
TL;DR: An overview of the optical and electronic processes that take place in a solid-state organic solar cell, which is defined as a cell in which the semiconducting materials between the electrodes are organic.
Abstract: Our objective in this Account is 3-fold. First, we provide an overview of the optical and electronic processes that take place in a solid-state organic solar cell, which we define as a cell in which the semiconducting materials between the electrodes are organic, be them polymers, oligomers, or small molecules; this discussion is also meant to set the conceptual framework in which many of the contributions to this Special Issue on Photovoltaics can be viewed. We successively turn our attention to (i) optical absorption and exciton formation, (ii) exciton migration to the donor−acceptor interface, (iii) exciton dissociation into charge carriers, resulting in the appearance of holes in the donor and electrons in the acceptor, (iv) charge-carrier mobility, and (v) charge collection at the electrodes. For each of these processes, we also describe the theoretical challenges that need to be overcome to gain a comprehensive understanding at the molecular level. Finally, we highlight recent theoretical advances, ...

1,283 citations

Journal ArticleDOI
TL;DR: It is shown that the neglect of electronic polarization leads to qualitatively incorrect values and trends for the transfer integrals computed with the energy splitting method, even in simple prototypes such as ethylene or pentacene dimers.
Abstract: Theoretical investigations of charge transport in organic materials are generally based on the "energy splitting in dimer" method and routinely assume that the transport parameters (site energies and transfer integrals) determined from monomer and dimer calculations can be reliably used to describe extended systems. Here, we demonstrate that this transferability can fail even in molecular crystals with weak van der Waals intermolecular interactions, due to the substantial (but often ignored) impact of polarization effects, particularly on the site energies. We show that the neglect of electronic polarization leads to qualitatively incorrect values and trends for the transfer integrals computed with the energy splitting method, even in simple prototypes such as ethylene or pentacene dimers. The polarization effect in these systems is largely electrostatic in nature and can change dramatically upon transition from a dimer to an extended system. For example, the difference in site energy for a prototypical "face-to-edge" one-dimensional stack of pentacene molecules is calculated to be 30% greater than that in the "face-to-edge" dimer, whereas the site energy difference in the pentacene crystal is vanishingly small. Importantly, when computed directly in the framework of localized monomer orbitals, the transfer integral values for dimer and extended systems are very similar.

722 citations

Journal ArticleDOI
TL;DR: Key optoelectronic properties for donor and acceptor organic semiconductors are identified to obtain organic solar cells with reduced open-circuit voltage losses and high power conversion efficiencies.
Abstract: The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps Energy losses during charge separation at the donor–acceptor interface and non-radiative recombination are among the main causes of such voltage losses Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend Following these rules, we present a range of existing and new donor–acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 003%, leading to non-radiative voltage losses as small as 021 V This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells Key optoelectronic properties for donor and acceptor organic semiconductors are identified to obtain organic solar cells with reduced open-circuit voltage losses and high power conversion efficiencies

613 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a review of several organic photovoltaics (OPV) technologies, including conjugated polymers with high-electron-affinity molecules like C60 (as in the bulk-heterojunction solar cell).
Abstract: There has been an intensive search for cost-effective photovoltaics since the development of the first solar cells in the 1950s. [1–3] Among all alternative technologies to silicon-based pn-junction solar cells, organic solar cells could lead the most significant cost reduction. [4] The field of organic photovoltaics (OPVs) comprises organic/inorganic nanostructures like dyesensitized solar cells, multilayers of small organic molecules, and phase-separated mixtures of organic materials (the bulkheterojunction solar cell). A review of several OPV technologies has been presented recently. [5] Light absorption in organic solar cells leads to the generation of excited, bound electron– hole pairs (often called excitons). To achieve substantial energy-conversion efficiencies, these excited electron–hole pairs need to be dissociated into free charge carriers with a high yield. Excitons can be dissociated at interfaces of materials with different electron affinities or by electric fields, or the dissociation can be trap or impurity assisted. Blending conjugated polymers with high-electron-affinity molecules like C60 (as in the bulk-heterojunction solar cell) has proven to be an efficient way for rapid exciton dissociation. Conjugated polymer–C60 interpenetrating networks exhibit ultrafast charge transfer (∼40 fs). [6,7] As there is no competing decay process of the optically excited electron–hole pair located on the polymer in this time regime, an optimized mixture with C60 converts absorbed photons to electrons with an efficiency close to 100%. [8] The associated bicontinuous interpenetrating network enables efficient collection of the separated charges at the electrodes. The bulk-heterojunction solar cell has attracted a lot of attention because of its potential to be a true low-cost photovoltaic technology. A simple coating or printing process would enable roll-to-roll manufacturing of flexible, low-weight PV modules, which should permit cost-efficient production and the development of products for new markets, e.g., in the field of portable electronics. One major obstacle for the commercialization of bulk-heterojunction solar cells is the relatively small device efficiencies that have been demonstrated up to now. [5] The best energy-conversion efficiencies published for small-area devices approach 5%. [9–11] A detailed analysis of state-of-the-art bulk-heterojunction solar cells [8] reveals that the efficiency is limited by the low opencircuit voltage (Voc) delivered by these devices under illumination. Typically, organic semiconductors with a bandgap of about 2 eV are applied as photoactive materials, but the observed open-circuit voltages are only in the range of 0.5–1 V. There has long been a controversy about the origin of the Voc in conjugated polymer–fullerene solar cells. Following the classical thin-film solar-cell concept, the metal–insulator–metal (MIM) model was applied to bulk-heterojunction devices. In the MIM picture, Voc is simply equal to the work-function difference of the two metal electrodes. The model had to be modified after the observation of the strong influence of the reduction potential of the fullerene on the open-circuit volt

4,816 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: Electronic Coupling in Oligoacene Derivatives: Factors Influencing Charge Mobility, and the Energy-Splitting-in-Dimer Method 3.1.
Abstract: 2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The Energy-Splitting-in-Dimer Method 936 3.1.2. The Orthogonality Issue 937 3.1.3. Impact of the Site Energy 937 3.1.4. Electronic Coupling in Oligoacene Derivatives 938

3,635 citations