scispace - formally typeset
Search or ask a question
Author

Veerle Mommaerts

Bio: Veerle Mommaerts is an academic researcher from Ghent University. The author has contributed to research in topics: Bombus terrestris & Bumblebee. The author has an hindex of 18, co-authored 37 publications receiving 1884 citations. Previous affiliations of Veerle Mommaerts include Vrije Universiteit Brussel & Free University of Brussels.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed risk assessment scheme for systemic compounds was shown to be applicable to assess the risk for side-effects of neonicotinoids as it considers the effect on different life stages and different levels of biological organization (organism versus colony).
Abstract: Neonicotinoid insecticides are successfully applied to control pests in a variety of agricultural crops; however, they may not only affect pest insects but also non-target organisms such as pollinators. This review summarizes, for the first time, 15 years of research on the hazards of neonicotinoids to bees including honey bees, bumble bees and solitary bees. The focus of the paper is on three different key aspects determining the risks of neonicotinoid field concentrations for bee populations: (1) the environmental neonicotinoid residue levels in plants, bees and bee products in relation to pesticide application, (2) the reported side-effects with special attention for sublethal effects, and (3) the usefulness for the evaluation of neonicotinoids of an already existing risk assessment scheme for systemic compounds. Although environmental residue levels of neonicotinoids were found to be lower than acute/chronic toxicity levels, there is still a lack of reliable data as most analyses were conducted near the detection limit and for only few crops. Many laboratory studies described lethal and sublethal effects of neonicotinoids on the foraging behavior, and learning and memory abilities of bees, while no effects were observed in field studies at field-realistic dosages. The proposed risk assessment scheme for systemic compounds was shown to be applicable to assess the risk for side-effects of neonicotinoids as it considers the effect on different life stages and different levels of biological organization (organism versus colony). Future research studies should be conducted with field-realistic concentrations, relevant exposure and evaluation durations. Molecular markers may be used to improve risk assessment by a better understanding of the mode of action (interaction with receptors) of neonicotinoids in bees leading to the identification of environmentally safer compounds.

851 citations

Journal ArticleDOI
TL;DR: A thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided, and the acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied.
Abstract: Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods.

332 citations

Journal ArticleDOI
TL;DR: It is recommended that behavior tests should be included in risk assessment tests for highly toxic pesticides because impairment of the foraging behavior can result in a decreased pollination, lower reproduction and finally in colony mortality due to a lack of food.
Abstract: Bombus terrestris bumblebees are important pollinators of wild flowers, and in modern agriculture they are used to guarantee pollination of vegetables and fruits. In the field it is likely that worker bees are exposed to pesticides during foraging. To date, several tests exist to assess lethal and sublethal side-effects of pesticides on bee survival, growth/development and reproduction. Within the context of ecotoxicology and insect physiology, we report the development of a new bioassay to assess the impact of sublethal concentrations on the bumblebee foraging behavior under laboratory conditions. In brief, the experimental setup of this behavior test consists of two artificial nests connected with a tube of about 20 cm and use of queenless micro-colonies of 5 workers. In one nest the worker bees constructed brood, and in the other food (sugar and pollen) was provided. Before exposure, the worker bees were allowed a training to forage for untreated food; afterwards this was replaced by treated food. Using this setup we investigated the effects of sublethal concentrations of the neonicotinoid insecticide imidacloprid, known to negatively affect the foraging behavior of bees. For comparison within the family of neonicotinoid insecticides, we also tested different concentrations of two other neonicotinoids: thiamethoxam and thiacloprid, in the laboratory with the new bioassay. Finally to evaluate the new bioassay, we also tested sublethal concentrations of imidacloprid in the greenhouse with use of queenright colonies of B. terrestris, and here worker bees needed to forage/fly for food that was placed at a distance of 3 m from their hives. In general, the experiments showed that concentrations that may be considered safe for bumblebees can have a negative influence on their foraging behavior. Therefore it is recommended that behavior tests should be included in risk assessment tests for highly toxic pesticides because impairment of the foraging behavior can result in a decreased pollination, lower reproduction and finally in colony mortality due to a lack of food.

237 citations

Journal ArticleDOI
TL;DR: The present results suggest that CSIs should be applied with caution in combination with bumblebees, with a dramatic reduction in brood production, especially after oral treatment with pollen and sugar/water.
Abstract: This research project examined the potential hazards of a major class of insect growth regulators (IGRs) to survival, reproduction and larval growth in bumblebees Bombus terrestris L. Eight chitin synthesis inhibitors (CSIs) were tested: buprofezin, cyromazine, diflubenzuron, flucycloxuron, flufenoxuron, lufenuron, novaluron and teflubenzuron. These different IGRs, which are important in the control of pest insects in greenhouses, were applied via three different routes of exposure under laboratory conditions: dermal contact, and orally via the drinking of sugar/water and via pollen. The compounds were tested at their respective maximum field recommended concentrations (MFRC) and also in dose-response assays to calculate LC(50) values. In general, none of the CSIs showed acute worker toxicity. However, there was a dramatic reduction in brood production, especially after oral treatment with pollen and sugar/water. Conspicuously, egg fertility was reduced in all treatments with diflubenzuron and teflubenzuron. In addition to egg mortality, the worker bumblebees removed larvae from the treated nest, and in most cases these individuals were dead first-second instars. Under a binocular microscope, such larvae showed an abnormally formed cuticle leading to mechanical weakness and death. In another series of experiments using (14)C-diflubenzuron and (14)C-flufenoxuron, cuticular penetration in workers was studied for a better understanding of the differences in toxicity. With (14)C-diflubenzuron, transovarial transport and accumulation in the deposited eggs supported the strong reproductive effects. Overall, the present results suggest that CSIs should be applied with caution in combination with bumblebees. The compatibility of each compound to be used in combination with B. terrestris is discussed in relation to calculated LC(50) values, routes of uptake and effects.

89 citations

Journal ArticleDOI
TL;DR: The results confirm the proposed role for PKGs in division of labor and discover an age-related decrease in Btfor expression in both nursing and foraging bumblebees, which speculate that the presence of BtFOR is required for correct adaptation to new external stimuli and rapid learning for foraging.
Abstract: In eusocial insects, the division of labor within a colony, based on either age or size, is correlated with a differential foraging (for) gene expression and PKG activity. This article presents in the first part a study on the for gene, encoding a cGMP-dependent protein kinase (PKG) in the bumblebee Bombus terrestris. Cloning of the open reading frame allowed phylogenetic tracing, which showed conservation of PKGs among social insects. Our results confirm the proposed role for PKGs in division of labor. Btfor gene expression is significantly higher in the larger foragers compared with the smaller sized nurses. More importantly, we discovered an age-related decrease in Btfor expression in both nursing and foraging bumblebees. We therefore speculate that the presence of BtFOR is required for correct adaptation to new external stimuli and rapid learning for foraging. In a second series of experiments, worker bumblebees of B. terrestris were treated with two insecticides imidacloprid and kinoprene, which have shown to cause impaired foraging behavior. Compared with controls, only the latter treatment resulted in a decreased Btfor expression, which concurs with a stimulation of ovarian growth and a shift in labor toward nest-related tasks. The data are discussed in relation to Btfor expression in the complex physiological event of foraging and side-effects by pesticides.

55 citations


Cited by
More filters
Journal ArticleDOI
27 Mar 2015-Science
TL;DR: The stresses bees are experiencing from climate change, infectious diseases, and insecticides are reviewed, with concern that the authors may be nearing a “pollination crisis” in which crop yields begin to fall.
Abstract: Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined, bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple, interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future.

2,526 citations

Journal ArticleDOI
TL;DR: Major knowledge gaps remain, but current use of neonicotinoids is likely to be impacting on a broad range of non-target taxa including pollinators and soil and aquatic invertebrates and hence threatens a range of ecosystem services.
Abstract: Summary 1. Neonicotinoids are now the most widely used insecticides in the world. They act systemically, travelling through plant tissues and protecting all parts of the crop, and are widely applied as seed dressings. As neurotoxins with high toxicity to most arthropods, they provide effective pest control and have numerous uses in arable farming and horticulture. 2. However, the prophylactic use of broad-spectrum pesticides goes against the long-established principles of integrated pest management (IPM), leading to environmental concerns. 3. It has recently emerged that neonicotinoids can persist and accumulate in soils. They are water soluble and prone to leaching into waterways. Being systemic, they are found in nectar and pollen of treated crops. Reported levels in soils, waterways, field margin plants and floral resources overlap substantially with concentrations that are sufficient to control pests in crops, and commonly exceed the LC50 (the concentration which kills 50% of individuals) for beneficial organisms. Concentrations in nectar and pollen in crops are sufficient to impact substantially on colony reproduction in bumblebees. 4. Although vertebrates are less susceptible than arthropods, consumption of small numbers of dressed seeds offers a route to direct mortality in birds and mammals. 5. Synthesis and applications. Major knowledge gaps remain, but current use of neonicotinoids is likely to be impacting on a broad range of non-target taxa including pollinators and soil and aquatic invertebrates and hence threatens a range of ecosystem services.

1,325 citations

Journal ArticleDOI
08 Dec 2016-Nature
TL;DR: There are well-documented declines in some wild and managed pollinators in several regions of the world, however, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.
Abstract: Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.

1,121 citations

Journal ArticleDOI
20 Apr 2012-Science
TL;DR: Given the scale of use of neonicotinoid insecticides, it is suggested that they may be having a considerable negative impact on wild bumble bee populations across the developed world.
Abstract: Growing evidence for declines in bee populations has caused great concern because of the valuable ecosystem services they provide. Neonicotinoid insecticides have been implicated in these declines because they occur at trace levels in the nectar and pollen of crop plants. We exposed colonies of the bumble bee Bombus terrestris in the laboratory to field-realistic levels of the neonicotinoid imidacloprid, then allowed them to develop naturally under field conditions. Treated colonies had a significantly reduced growth rate and suffered an 85% reduction in production of new queens compared with control colonies. Given the scale of use of neonicotinoids, we suggest that they may be having a considerable negative impact on wild bumble bee populations across the developed world.

1,066 citations

Journal ArticleDOI
TL;DR: Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes to prevent further declines.
Abstract: Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.

976 citations