scispace - formally typeset
Search or ask a question
Author

Vehbi Cagri Gungor

Bio: Vehbi Cagri Gungor is an academic researcher from Abdullah Gül University. The author has contributed to research in topics: Wireless sensor network & Smart grid. The author has an hindex of 32, co-authored 92 publications receiving 9350 citations. Previous affiliations of Vehbi Cagri Gungor include Georgia Institute of Technology & Bahçeşehir University.


Papers
More filters
Journal ArticleDOI
TL;DR: The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field.
Abstract: For 100 years, there has been no change in the basic structure of the electrical power grid. Experiences have shown that the hierarchical, centrally controlled grid of the 20th Century is ill-suited to the needs of the 21st Century. To address the challenges of the existing power grid, the new concept of smart grid has emerged. The smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability, and so on. While current power systems are based on a solid information and communication infrastructure, the new smart grid needs a different and much more complex one, as its dimension is much larger. This paper addresses critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues and opportunities. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

2,331 citations

Journal ArticleDOI
TL;DR: The aim is to provide a contemporary look at the current state of the art in IWSNs and discuss the still-open research issues in this field and to make the decision-making process more effective and direct.
Abstract: In today's competitive industry marketplace, the companies face growing demands to improve process efficiencies, comply with environmental regulations, and meet corporate financial objectives. Given the increasing age of many industrial systems and the dynamic industrial manufacturing market, intelligent and low-cost industrial automation systems are required to improve the productivity and efficiency of such systems. The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent-processing capability. In this regard, IWSN plays a vital role in creating a highly reliable and self-healing industrial system that rapidly responds to real-time events with appropriate actions. In this paper, first, technical challenges and design principles are introduced in terms of hardware development, system architectures and protocols, and software development. Specifically, radio technologies, energy-harvesting techniques, and cross-layer design for IWSNs have been discussed. In addition, IWSN standards are presented for the system owners, who plan to utilize new IWSN technologies for industrial automation applications. In this paper, our aim is to provide a contemporary look at the current state of the art in IWSNs and discuss the still-open research issues in this field and, hence, to make the decision-making process more effective and direct.

1,595 citations

Journal ArticleDOI
TL;DR: A comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault is presented.
Abstract: The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications.

1,255 citations

Journal ArticleDOI
TL;DR: This paper overviews the issues related to the smart grid architecture from the perspective of potential applications and the communications requirements needed for ensuring performance, flexible operation, reliability and economics.
Abstract: Information and communication technologies (ICT) represent a fundamental element in the growth and performance of smart grids. A sophisticated, reliable and fast communication infrastructure is, in fact, necessary for the connection among the huge amount of distributed elements, such as generators, substations, energy storage systems and users, enabling a real time exchange of data and information necessary for the management of the system and for ensuring improvements in terms of efficiency, reliability, flexibility and investment return for all those involved in a smart grid: producers, operators and customers. This paper overviews the issues related to the smart grid architecture from the perspective of potential applications and the communications requirements needed for ensuring performance, flexible operation, reliability and economics.

1,018 citations

Journal ArticleDOI
TL;DR: The aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision-making process more effective and direct.

509 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey presents a comprehensive review of the recent literature since the publication of a survey on sensor networks, and gives an overview of several new applications and then reviews the literature on various aspects of WSNs.

5,626 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

Journal ArticleDOI
TL;DR: The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field.
Abstract: For 100 years, there has been no change in the basic structure of the electrical power grid. Experiences have shown that the hierarchical, centrally controlled grid of the 20th Century is ill-suited to the needs of the 21st Century. To address the challenges of the existing power grid, the new concept of smart grid has emerged. The smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability, and so on. While current power systems are based on a solid information and communication infrastructure, the new smart grid needs a different and much more complex one, as its dimension is much larger. This paper addresses critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues and opportunities. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

2,331 citations

Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations