scispace - formally typeset
Search or ask a question
Author

Venkata S. Sabbisetti

Bio: Venkata S. Sabbisetti is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Kidney disease & Acute kidney injury. The author has an hindex of 34, co-authored 82 publications receiving 3820 citations. Previous affiliations of Venkata S. Sabbisetti include College of Health Sciences, Bahrain & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: A mouse model of kidney injury is developed using the Six2-Cre-LoxP technology to selectively activate expression of the simian diphtheria toxin receptor in renal epithelia derived from the metanephric mesenchyme, substantiating a direct role for damaged tubule epithelium in the pathogenesis of CKD.

390 citations

Journal ArticleDOI
TL;DR: It is suggested that the most accurate method to quantify biomarkers requires the collection of timed urine specimens to estimate the actual excretion rate, provided that the biomarker is stable over the period of collection.

363 citations

Journal ArticleDOI
TL;DR: The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury as discussed by the authors, which can be used as a blood biomarker for kidney injury.
Abstract: Currently, no blood biomarker that specifically indicates injury to the proximal tubule of the kidney has been identified. Kidney injury molecule-1 (KIM-1) is highly upregulated in proximal tubular cells following kidney injury. The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury. We report that shed KIM-1 also serves as a blood biomarker of kidney injury. Sensitive assays to measure plasma and serum KIM-1 in mice, rats, and humans were developed and validated in the current study. Plasma KIM-1 levels increased with increasing periods of ischemia (10, 20, or 30 minutes) in mice, as early as 3 hours after reperfusion; after unilateral ureteral obstruction (day 7) in mice; and after gentamicin treatment (50 or 200 mg/kg for 10 days) in rats. In humans, plasma KIM-1 levels were higher in patients with AKI than in healthy controls or post-cardiac surgery patients without AKI (area under the curve, 0.96). In patients undergoing cardiopulmonary bypass, plasma KIM-1 levels increased within 2 days after surgery only in patients who developed AKI (P<0.01). Blood KIM-1 levels were also elevated in patients with CKD of varous etiologies. In a cohort of patients with type 1 diabetes and proteinuria, serum KIM-1 level at baseline strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-up, after adjustment for baseline urinary albumin-to-creatinine ratio, eGFR, and Hb1Ac. These results identify KIM-1 as a blood biomarker that specifically reflects acute and chronic kidney injury.

329 citations

Journal ArticleDOI
TL;DR: S sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease, analogous to progressive kidney disease in humans.
Abstract: Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1RECtg) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1RECtg mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1RECtg kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1–dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment ofAKI.
Abstract: tion’, implying that most patients ‘should’ receive a particular action. In contrast, level 2 guidelines are essentially ‘suggestions’ and are deemed to be ‘weak’ or discretionary, recognising that management decisions may vary in different clinical contexts. Each recommendation was further graded from A to D by the quality of evidence underpinning them, with grade A referring to a high quality of evidence whilst grade D recognised a ‘very low’ evidence base. The overall strength and quality of the supporting evidence is summarised in table 1 . The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment of AKI. The full summary of clinical practice statements is available at www.kdigo.org, but a few key recommendation statements will be highlighted here.

6,247 citations

01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: The well validated, as well as putative mechanisms involved in the development of diabetic complications are discussed and new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Abstract: It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.

1,915 citations

Journal ArticleDOI
TL;DR: Recent epidemiologic and mechanistic studies suggest that the two syndromes of diminished kidney function are not distinct entities but rather are closely interconnected — chronic kidney disease is a risk factor for acute kidney injury, acute kidneys injury is arisk factor for the development of chronic kidney Disease, and both acute kidney disease and chronic kidney health are risk factors for cardiovascular disease.
Abstract: For more than 40 years, nephrologists have classified diminished kidney function as two distinct syndromes — acute and chronic kidney failure. Whereas chronic kidney disease was recognized in the 19th century, acute renal dysfunction became evident during the London Blitz of World War II, with the realization that crush injuries could cause dramatic but often reversible cessation of renal function. The disease states and stages of both acute and chronic renal syndromes are delineated according to the serum creatinine concentration or the glomerular filtration rate (GFR), functional markers that were identified in the early 20th century. 1 Advanced renal impairment in both syndromes is treated with dialysis. During the past decade, separate conceptual models for chronic kidney disease 2 and acute kidney injury 3 were developed to facilitate organized approaches to clinical research and trials. However, recent epidemiologic and mechanistic studies suggest that the two syndromes are not distinct entities but rather are closely interconnected — chronic kidney disease is a risk factor for acute kidney injury, acute kidney injury is a risk factor for the development of chronic kidney disease, and both acute kidney injury and chronic kidney disease are risk factors for cardiovascular disease (Fig. 1). 4

1,392 citations

Journal ArticleDOI
TL;DR: This review focuses on recent findings and knowledge gaps in the area of EV biogenesis, release, and uptake and highlights examples whereby EV cargoes control basic cellular functions, including motility and polarization, immune responses, and development, and contribute to diseases such as cancer and neurodegeneration.

952 citations