scispace - formally typeset
Search or ask a question
Author

Venu Babu Borugadda

Bio: Venu Babu Borugadda is an academic researcher from University of Saskatchewan. The author has contributed to research in topics: Biodiesel & Castor oil. The author has an hindex of 13, co-authored 38 publications receiving 743 citations. Previous affiliations of Venu Babu Borugadda include Indian Institute of Technology Guwahati.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review on the synthesis of biodiesel through esterification and transesterification using non-edible oil resources which are available in India, and available processes for synthesizing biodiesel (acid-, base-catalyzed transesterion reactions (homogeneous and heterogeneous), their importance, and which is the commercial process also discussed here.
Abstract: The increased demand for energy, climate change, and energy security concerns has driven the research interest for the development of alternative fuel from plant origin. Biodiesel derived from plant oils, which include edible and non-edible oil have gained interest for the last two decades as alternative for diesel around the world. Among these plant origin oils more than 95% of biodiesel production feedstocks come from edible oils, because they are readily available in many regions. The major advantage of these feedstocks is the properties of biodiesel produced from them are suitable to be used as diesel fuel substitute. But the consequence is the increase demand of the feedstock for food as well as fuel. A sustainable alternative fuel should be derived from renewable non-food biomass sources. The main objective of this review is to give an overview on the synthesis of biodiesel through esterification and transesterification using non-edible oil resources which are available in India, and available processes for synthesis of biodiesel (acid-, base-catalyzed transesterification reactions (homogeneous and heterogeneous), their importance, and which is the commercial process also discussed here.

289 citations

Journal ArticleDOI
TL;DR: In this paper, the authors improved the thermo-oxidative stability of epoxidised COFAME by using the TGA technique in an inert and oxygen atmosphere, and the resulting products were confirmed by 1 H NMR, FTIR spectroscopy and also analysed for oxirane oxygen content (OOC).

96 citations

Journal ArticleDOI
TL;DR: In this article, waste cooking oil methyl esters (WCOME) originated from soybean oil was prepared by aiming at the maximum esters conversion, which was confirmed and supported by thin layer chromatography and nuclear magnetic resonance spectral techniques.

86 citations

Journal ArticleDOI
TL;DR: In this article, low temperature properties of castor oil methyl esters were investigated using ASTM and differential scanning calorimetry (DSC) techniques and compared with WCOME.

63 citations

Journal ArticleDOI
TL;DR: In this article, the most recent studies on hydrochar characteristics, reaction mechanisms for char production technology such as hydrothermal carbonization, as well as hydrochar activation and functionalization are reviewed.
Abstract: Recently, due to the escalating usage of non-renewable fossil fuels such as coal, natural gas and petroleum coke in electricity and power generation, and associated issues with pollution and global warming, more attention is being paid to finding alternative renewable fuel sources. Thermochemical and hydrothermal conversion processes have been used to produce biochar and hydrochar, respectively, from waste renewable biomass. Char produced from the thermochemical and hydrothermal decomposition of biomass is considered an environmentally friendly replacement for solid hydrocarbon materials such as coal and petroleum coke. Unlike thermochemically derived biochar, hydrochar has received little attention due to the lack of literature on its production technologies, physicochemical characterization, and applications. This review paper aims to fulfill these objectives and fill the knowledge gaps in the literature relating to hydrochar. Therefore, this review discusses the most recent studies on hydrochar characteristics, reaction mechanisms for char production technology such as hydrothermal carbonization, as well as hydrochar activation and functionalization. In addition, the applications of hydrochar, mainly in the fields of agriculture, pollutant adsorption, catalyst support, bioenergy, carbon sequestration, and electrochemistry are reviewed. With advancements in hydrothermal technologies and other environmentally friendly conversion technologies, hydrochar appears to be an appealing bioresource for a wide variety of energy, environmental, industrial, and commercial applications.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduced some species of non-edible vegetables whose oils are potential sources of biodiesel, such as Pongamia pinnata (karanja), Calophyllum inophyllus (Polanga), Maduca indica (mahua), Hevea brasiliensis (rubber seed), Cotton seed, Simmondsia chinesnsis (Jojoba), Nicotianna tabacum (tobacco), Azadirachta indica, Linum usitatissimum (Linseed)

481 citations

Journal ArticleDOI
TL;DR: In this article, the authors classified the biomass into four general types based on their origin: energy crops, agricultural residues and waste, forestry waste and residues and industrial and municipal wastes, and provided an overview of different types of biorefinery, broad challenges and availability of biomass.
Abstract: Sustainable production of energy, fuels, organic chemicals and polymers from biomass in an integrated biorefinery is extremely important to reduce enslavement on limited fossil fuels. In the present article, the biomass was classified into four general types based on their origin: energy crops, agricultural residues and waste, forestry waste and residues and industrial and municipal wastes. The article further elucidates the chemistry of various types of biomass used in the biorefinery. The biorefinery was classified into three broad categories based on the chemistry of biomass: triglyceride, sugar and starchy and lignocellulosic. The article further presents a comprehensive outlines of opportunities and recent trends of each type of biorefinery. A brief overview of original and revised list of platform chemicals, their sources from biomass and derivative potentials were also articulated. The article also provides comparisons of different types of biorefinery, broad challenges and availability of biomass. Furthermore, the article provides an overview of hydrocarbon biorefinery for production of hydrocarbon fuels and building block chemicals from biomass.

340 citations

Journal ArticleDOI
TL;DR: In this paper, the characteristics of the potential biodiesel and biodiesel diesel blends fuel properties were reviewed and compared to diesel fuel and showed that the fuel properties of biodiesel blends fuel were very close to diesel fuels and satisfied ASTM 6751 and EN 14214 standards.
Abstract: Biodiesel is biodegradable and nontoxic alternative fuel for diesel engine which has become more attractive to replace diesel fuel. In this study, vegetable oil was identified as potential sources for biodiesel production. The production of biodiesel from different non-edible oilseed crops has been extensively investigated for the past few years. Thus, the aim of this study is to critically review on the characteristic of the potential biodiesel and biodiesel diesel blends fuel properties. The aspects of this study cover the biodiesel production and fuel properties of biodiesel and biodiesel blends. Besides, some studies have shown that there is a direct correlation between fatty acid composition and biodiesel properties. The fuel properties of biodiesel blends fuel were very close to diesel fuels and satisfied ASTM 6751 and EN 14214 standards. As a final note, further study on the utilization of biodiesel blends needs to be carried out in order to ensure optimization in engine operation.

284 citations

Journal ArticleDOI
TL;DR: In this paper, a sustainable approach for utilizing plant and microalgal oils as feedstocks for biodiesel has been discussed and the emerging cost effective methods in production of biodiesel have been described.
Abstract: The production of biodiesel can be accomplished using a variety of feedstock sources. Plant and microalgae based feedstocks are prominent and are studied extensively. Plant based feedstocks cultivated as monoculture on wastelands and trees in forests can cater towards partial fulfillment of feedstock requirements for biodiesel industry. Synthesis of biodiesel from microalgal oil has gathered immense interest and has potential to cater to the increasing feedstocks demands of the biodiesel industry. The major advantage offered by microalgal oil, as compared to plant based oils, is its potential for culture on non-arable land. Despite of the advantages of microalgal oil as a feedstock for biodiesel, there are constraints that have to be overcome in order to make it economical and sustainable. Sustainable approaches for both the plant and microalgae as feedstocks have been drawn. Despite there being several plant species, few have been found to be desirable as feedstocks for biodiesel production based on their lipid profiles. Among the microalgae, there are thousands of species and several of these have been cultured for extracting the oil to explore their feasibility in utilization as biodiesel feedstocks. Though, several of the microalgal species have shown potential for high biomass growth and lipid productivity, only a few have been found to provide a high biodiesel yield and conversion. Due to the several steps involved in the extraction of oil which are energy intensive, the cost of biodiesel from microalgal oil is high as compared with that obtained from the plant oils. A sustainable approach for utilizing plant and microalgal oils as feedstocks for biodiesel have been discussed. The emerging cost effective methods in production of biodiesel have been described. The energy return and greenhouse gas emissions from biodiesel have been outlined. Together, the plant oil and microalgal oil can offer potential source of feedstocks for the production of biodiesel. (C) 2013 Elsevier Ltd. All rights reserved.

269 citations

Journal ArticleDOI
Abstract: Direct injection diesel engines are more popular in the automotive sector than spark ignition (SI) engines due to its fuel lean operation However, the demand of fossil fuel is rising day by day and hence the major fuel source of diesel engine, the petroleum based fuel, is depleting rapidly Many countries depend mainly on imported fossil fuels due to lack of fuel reserves and it has great impact on the economy In addition to this, the major concerns of diesel engine are its oxides of nitrogen and smoke emissions Therefore, for the past several decades extensive efforts are being made to search for alternate fuels to overcome the dependence on fossil fuel and environment pollution In this regard, several alternate fuels namely hydrogen, oxygenated fuels like alcohol fuels, dimethyl ether and biodiesel fuels etc, have been extensively analysed Recent studies show that biodiesel is one of the most promising alternate fuels for diesel engines because of its biodegradable, oxygenated, sulphur free and renewable characteristics Hence, it is getting the attention of researchers all over the world The blends of biodiesel with fossil diesel have many benefits like reduction in emissions, lower engine wear, lesser engine oil consumption and comparable thermal efficiency vis-a-vis diesel fuel Exhaustive experimental works have been carried out to analyse the suitability of biodiesel fuel as alternate fuel and to explore their advantages in diesel engines Hence, this paper is attempted to present a comprehensive review on the performance, combustion and emission characteristics of some important biodiesel fuels on diesel engines This comprehensive review on the published literature will be helpful to the researchers to understand the state-of-the-art technology of the biodiesel fuelled compression ignition engine

238 citations