scispace - formally typeset
Search or ask a question
Author

Venu Govindaraju

Bio: Venu Govindaraju is an academic researcher from University at Buffalo. The author has contributed to research in topics: Handwriting recognition & Word recognition. The author has an hindex of 53, co-authored 468 publications receiving 11215 citations. Previous affiliations of Venu Govindaraju include State University of New York System.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper is the first survey to focus on Arabic handwriting recognition and the first Arabic character recognition survey to provide recognition rates and descriptions of test data for the approaches discussed.
Abstract: The automatic recognition of text on scanned images has enabled many applications such as searching for words in large volumes of documents, automatic sorting of postal mail, and convenient editing of previously printed documents. The domain of handwriting in the Arabic script presents unique technical challenges and has been addressed more recently than other domains. Many different methods have been proposed and applied to various types of images. This paper provides a comprehensive review of these methods. It is the first survey to focus on Arabic handwriting recognition and the first Arabic character recognition survey to provide recognition rates and descriptions of test data for the approaches discussed. It includes background on the field, discussion of the methods, and future research directions.

503 citations

Journal ArticleDOI
TL;DR: A new approach for fingerprint enhancement based on short time Fourier transform (STFT) Analysis is introduced and the algorithm simultaneously estimates all the intrinsic properties of the fingerprints such as the foreground region mask, local ridge orientation and local ridge frequency.

381 citations

Journal ArticleDOI
TL;DR: A survey and classification of the state-of-the-art in behavioural biometrics which is based on skills, style, preference, knowledge, motor-skills or strategy used by people while accomplishing different everyday tasks.
Abstract: This study is a survey and classification of the state-of-the-art in behavioural biometrics which is based on skills, style, preference, knowledge, motor-skills or strategy used by people while accomplishing different everyday tasks such as driving an automobile, talking on the phone or using a computer. The authors examine current research in the field and analyse the types of features used to describe different types of behaviour. After comparing accuracy rates for verification of users using different behavioural biometric approaches, researchers address privacy issues which arise or might arise in the future with the use of behavioural biometrics.

350 citations

Journal ArticleDOI
TL;DR: Experimental results prove that the approach using the variable duration outperforms the method using fixed duration in terms of both accuracy and speed.
Abstract: A fast method of handwritten word recognition suitable for real time applications is presented in this paper. Preprocessing, segmentation and feature extraction are implemented using a chain code representation of the word contour. Dynamic matching between characters of a lexicon entry and segment(s) of the input word image is used to rank the lexicon entries in order of best match. Variable duration for each character is defined and used during the matching. Experimental results prove that our approach using the variable duration outperforms the method using fixed duration in terms of both accuracy and speed. Speed of the entire recognition process is about 200 msec on a single SPARC-10 platform and the recognition accuracy is 96.8 percent are achieved for lexicon size of 10, on a database of postal words captured at 212 dpi.

286 citations

Journal ArticleDOI
TL;DR: This work presents an approach that uses localized secondary features derived from relative minutiae information that is directly applicable to existing databases and balances the tradeoffs between maximizing the number of matches and minimizing total feature distance between query and reference fingerprints.

261 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.
Abstract: We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render (or synthesize) images of the face under novel poses and illumination conditions. The pose space is then sampled and, for each pose, the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone. Test results show that the method performs almost without error, except on the most extreme lighting directions.

5,027 citations

Journal ArticleDOI
TL;DR: A neural network-based upright frontal face detection system that arbitrates between multiple networks to improve performance over a single network, and a straightforward procedure for aligning positive face examples for training.
Abstract: We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present a straightforward procedure for aligning positive face examples for training. To collect negative examples, we use a bootstrap algorithm, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting nonface training examples, which must be chosen to span the entire space of nonface images. Simple heuristics, such as using the fact that faces rarely overlap in images, can further improve the accuracy. Comparisons with several other state-of-the-art face detection systems are presented, showing that our system has comparable performance in terms of detection and false-positive rates.

4,105 citations