scispace - formally typeset
Search or ask a question
Author

Verena M. Dirsch

Bio: Verena M. Dirsch is an academic researcher from University of Vienna. The author has contributed to research in topics: Vascular smooth muscle & Apoptosis. The author has an hindex of 46, co-authored 180 publications receiving 8205 citations. Previous affiliations of Verena M. Dirsch include Columbia University & Ludwig Maximilian University of Munich.


Papers
More filters
Journal ArticleDOI
TL;DR: While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs in the future.

1,760 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities, and discuss the potential of using natural products as drug leads.
Abstract: Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities. Natural products have historically made a major contribution to pharmacotherapy, but also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization. This Review discusses recent technological developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — that are enabling a revitalization of natural product-based drug discovery.

1,297 citations

Journal ArticleDOI
TL;DR: A significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources.

497 citations

Journal ArticleDOI
TL;DR: Increased active eNOS levels may antagonize the development of endothelial dysfunction and atherosclerosis, a hypothesis that supports the view that red wine indeed may have long-term protective cardiovascular properties mediated by its polyphenols.
Abstract: Background— Population-based studies suggest a reduced incidence of morbidity and mortality from coronary heart disease caused by moderate and regular consumption of red wine. Endothelial nitric oxide (NO) is a pivotal vasoprotective molecule. This study examines the influence of red wine polyphenols on the regulation of endothelial nitric oxide synthase (eNOS) expression and subsequent NO synthesis, focusing on the putative long-lasting antiatherosclerotic effects of red wine. Methods and Results— Treatment (20 hours) of human umbilical vein endothelial cells (HUVECs) and of the HUVEC-derived cell line EA.hy926 with a alcohol-free red wine polyphenol extract (RWPE) led to a concentration-dependent (100 to 600 μg/mL), significant increase in NO release (up to 3.0-fold/HUVEC and 2.0-fold/EA.hy926) as shown by use of the fluorescent probe DAF-2. This effect was corroborated by the [14C]l-arginine/l-citrulline conversion assay in intact EA.hy926 cells. RWPE (20 hours, 100 to 600 μg/mL) also significantly inc...

387 citations

Journal ArticleDOI
TL;DR: Collectively, Artepillin C showed anti-inflammatory effects mediated, at least in part, by prostaglandin E(2) and nitric oxide inhibition through NF-kappaB modulation, and exhibited bioavailability by oral administration.

252 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: An updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs and selective diagnosis through disease marker molecules is presented.
Abstract: Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc) in the treatment of various diseases The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (eg, natural products) and selective diagnosis through disease marker molecules The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed In addition, we have included information regarding the trends and perspectives in nanomedicine area

3,112 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs in the future.

1,760 citations