scispace - formally typeset
Search or ask a question
Author

Verónica Martínez

Bio: Verónica Martínez is an academic researcher from University of the Republic. The author has contributed to research in topics: Thiazolidine & Reaction intermediate. The author has an hindex of 4, co-authored 8 publications receiving 77 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: These are the first structurally described siderophores produced by endophytic bacteria, named serobactin A, B and C, which vary by the length of the fatty acid chain.
Abstract: Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria.

61 citations

Journal ArticleDOI
TL;DR: A series of 2-mercaptomethyl-thiazolidines (MMTZs) designed to replicate MBL interactions with reaction intermediates or hydrolysis products are synthesised and suggest sulphur–π interactions can be exploited for general ligand design in medicinal chemistry.
Abstract: Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., Ki = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(II) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than D/L-captopril. Unexpectedly, MMTZ binding features a thioether–π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur–π interactions can be exploited for general ligand design in medicinal chemistry.

15 citations

Journal ArticleDOI
TL;DR: In this article, the enantiomers of bacillamide C and neobacllamide A are described, along with the measurement of their optical activities, leading to the revision of the proposed absolute configurations of these natural products.
Abstract: The enantiospecific syntheses of both enantiomers of bacillamide C and neobacillamide A are described, along with the measurement of their optical activities, leading to the revision of the proposed absolute configurations of these natural products.

12 citations

Journal ArticleDOI
TL;DR: The results suggest that the 1H NMR-VML technique is an adequate tool to discriminate different T. cruzi death pathways.
Abstract: RIDIMEDCHAG-CYTED PEDECIBA (Uruguay) FONDECYT 1090124 1110053 CONICYT-PBCT Anillo ACT 112

11 citations

Journal ArticleDOI
TL;DR: In this article, 2-mercaptomethyl thiazolidines (MMTZs) were used as B1 MBL inhibitors and showed that inhibition extends to B2 (Sfh-I) and B3 (L1) enzymes.
Abstract: Metallo-β-lactamase (MBL) production in Gram-negative bacteria is an important contributor to β-lactam antibiotic resistance. Combining β-lactams with β-lactamase inhibitors (BLIs) is a validated route to overcoming resistance, but MBL inhibitors are not available in the clinic. On the basis of zinc utilization and sequence, MBLs are divided into three subclasses, B1, B2, and B3, whose differing active-site architectures hinder development of BLIs capable of "cross-class" MBL inhibition. We previously described 2-mercaptomethyl thiazolidines (MMTZs) as B1 MBL inhibitors (e.g., NDM-1) and here show that inhibition extends to the clinically relevant B2 (Sfh-I) and B3 (L1) enzymes. MMTZs inhibit purified MBLs in vitro (e.g., Sfh-I, Ki 0.16 μM) and potentiate β-lactam activity against producer strains. X-ray crystallography reveals that inhibition involves direct interaction of the MMTZ thiol with the mono- or dizinc centers of Sfh-I/L1, respectively. This is further enhanced by sulfur-π interactions with a conserved active site tryptophan. Computational studies reveal that the stereochemistry at chiral centers is critical, showing less potent MMTZ stereoisomers (up to 800-fold) as unable to replicate sulfur-π interactions in Sfh-I, largely through steric constraints in a compact active site. Furthermore, in silico replacement of the thiazolidine sulfur with oxygen (forming an oxazolidine) resulted in less favorable aromatic interactions with B2 MBLs, though the effect is less than that previously observed for the subclass B1 enzyme NDM-1. In the B3 enzyme L1, these effects are offset by additional MMTZ interactions with the protein main chain. MMTZs can therefore inhibit all MBL classes by maintaining conserved binding modes through different routes.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review addresses the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Abstract: All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

1,677 citations

Journal ArticleDOI
TL;DR: Insight is provided into the life strategies of plant-associated endophytes and soil isolates of B. mycoides through the alteration of expression of an overlapping set of genes, which had been reported to be involved in plant–microbe interactions.
Abstract: Plant root secreted compounds alter the gene expression of associated microorganisms by acting as signal molecules that either stimulate or repel the interaction with beneficial or harmful species, respectively. However, it is still unclear whether two distinct groups of beneficial bacteria, non-plant-associated (soil) strains and plant-associated (endophytic) strains, respond uniformly or variably to the exposure with root exudates. Therefore, Bacillus mycoides, a potential biocontrol agent and plant growth-promoting bacterium, was isolated from the endosphere of potatoes and from soil of the same geographical region. Confocal fluorescence microscopy of plants inoculated with GFP-tagged B. mycoides strains showed that the endosphere isolate EC18 had a stronger plant colonization ability and competed more successfully for the colonization sites than the soil isolate SB8. To dissect these phenotypic differences, the genomes of the two strains were sequenced and the transcriptome response to potato root exudates was compared. The global transcriptome profiles evidenced that the endophytic isolate responded more pronounced than the soil-derived isolate and a higher number of significant differentially expressed genes were detected. Both isolates responded with the alteration of expression of an overlapping set of genes, which had previously been reported to be involved in plant-microbe interactions; including organic substance metabolism, oxidative reduction, and transmembrane transport. Notably, several genes were specifically upregulated in the endosphere isolate EC18, while being oppositely downregulated in the soil isolate SB8. These genes mainly encoded membrane proteins, transcriptional regulators or were involved in amino acid metabolism and biosynthesis. By contrast, several genes upregulated in the soil isolate SB8 and downregulated in the endosphere isolate EC18 were related to sugar transport, which might coincide with the different nutrient availability in the two environments. Altogether, the presented transcriptome profiles provide highly improved insights into the life strategies of plant-associated endophytes and soil isolates of B. mycoides.

623 citations

Journal ArticleDOI
TL;DR: The bacterial endophytic microbiome promotes plant growth and health and beneficial effects are in many cases mediated and characterized by metabolic interactions as discussed by the authors, however, further research is needed to make use of beneficial plant-microbe interactions and to reduce pathogen infestation as well as to reveal novel bioactive substances of commercial interest.

454 citations

Journal ArticleDOI
TL;DR: This review surveys total syntheses of sulfur-containing natural products that introduce sulfur atoms using different sulfurization agents to construct related sulfur- containing moieties.

291 citations

Journal ArticleDOI
TL;DR: Analysis of isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, and P. hospita indicates that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.
Abstract: Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.

95 citations