scispace - formally typeset
Search or ask a question
Author

Veronica Poppa

Bio: Veronica Poppa is an academic researcher from University of Washington. The author has contributed to research in topics: Myocyte & Endothelium. The author has an hindex of 10, co-authored 12 publications receiving 4164 citations.

Papers
More filters
Journal ArticleDOI
08 Apr 2004-Nature
TL;DR: Results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.
Abstract: The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.

2,239 citations

Journal ArticleDOI
TL;DR: High levels of cardiomyocyte death occur for at least 4 days after grafting into injured hearts, in large part due to ischemia.

873 citations

Journal ArticleDOI
TL;DR: It is concluded that satellite cells differentiate into mature skeletal muscle and do not express cardiac-specific genes after grafting into the heart, and transdifferentiation into cardiomyocytes did not occur.

450 citations

Journal ArticleDOI
TL;DR: The data indicate that skeletal muscle cell grafting gives rise to a subpopulation of skeletal-cardiac hybrid cells with a currently unknown phenotype, which may benefit cardiac function after infarction.
Abstract: Cardiomyoplasty with skeletal myoblasts may benefit cardiac function after infarction. Recent reports indicate that adult stem cells can fuse with other cell types. Because myoblasts are “fusigenic” cells by nature, we hypothesized they might be particularly likely to fuse with cardiomyocytes. To test this, neonatal rat cardiomyocytes labeled with LacZ and green fluorescent protein (GFP) were cocultured with unlabeled C2C12 myoblasts. After 3 days, we observed a small population of skeletal myotubes that expressed LacZ and GFP, indicating cell fusion. To test whether such fusion occurred in vivo, LacZ-expressing C2C12 myoblasts were grafted into normal nude mouse hearts. At 2 weeks after grafting, cells at the graft-host interface expressed both LacZ and cardiac-specific myosin light chain 2v (MLC2v). To test more definitively whether fusion between skeletal and cardiac muscle could occur, we used a Cre/lox reporter system that activated LacZ only upon cell fusion. When neonatal cardiomyocytes from α-myosin heavy chain promoter (α-MHC)-Cre mice were cocultured with myoblasts from floxed-lacZ reporter mice, LacZ was activated in a subset of cells, indicating cell fusion occurred in vitro. Finally, we grafted the floxed-lacZ myoblasts into normal hearts of α-MHC-Cre + and α-MHC-Cre − mice (n=5 each). Hearts analyzed at 4 days and 1 week after transplantation demonstrated activation of LacZ when the skeletal muscle cells were implanted into hearts of α-MHC-Cre + mice, but not after implantation into α-MHC-Cre − mice. These data indicate that skeletal muscle cell grafting gives rise to a subpopulation of skeletal-cardiac hybrid cells with a currently unknown phenotype. The full text of this article is available online at http://circres.ahajournals.org.

154 citations

Journal ArticleDOI
TL;DR: The results implicate Axl as a potential mediator of vascular smooth muscle migration and proliferation caused by vascular injury and G protein-coupled receptor agonists.
Abstract: —Axl is a receptor tyrosine kinase originally identified as a transforming gene product in human myeloid leukemia cells. Cultured rat vascular smooth muscle cells also express Axl, where it has been proposed that Axl may play a role in cell proliferation. In the current study, we tested the hypotheses that Axl expression would parallel neointima formation in balloon-injured rat carotid, and that Axl expression would be regulated by growth factors present at sites of vascular injury. Ribonuclease protection assay showed dynamic increases in Axl mRNA in vessels, with peak expression 7 and 14 days after injury. Immunohistochemical analysis confirmed these results and demonstrated that Axl protein expression was localized primarily to cells of the neointima after injury. Northern blot analysis indicated increased mRNA expression for the secreted Axl ligand, Gas6, in injured carotids, with a time course paralleling that of Axl upregulation. Axl and Gas6 expression were temporally correlated with neoint...

151 citations


Cited by
More filters
Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.

12,204 citations

Journal ArticleDOI
TL;DR: Several studies which tested the use of MSCs in models of infarct (injured heart), stroke (brain), or meniscus regeneration models are reviewed within the context of M SC‐mediated trophic effects in tissue repair.
Abstract: Adult marrow-derived Mesenchymal Stem Cells (MSCs) are capable of dividing and their progeny are further capable of differentiating into one of several mesenchymal phenotypes such as osteoblasts, chondrocytes, myocytes, marrow stromal cells, tendon-ligament fibroblasts, and adipocytes. In addition, these MSCs secrete a variety of cytokines and growth factors that have both paracrine and autocrine activities. These secreted bioactive factors suppress the local immune system, inhibit fibrosis (scar formation) and apoptosis, enhance angiogenesis, and stimulate mitosis and differentiation of tissue-intrinsic reparative or stem cells. These effects, which are referred to as trophic effects, are distinct from the direct differentiation of MSCs into repair tissue. Several studies which tested the use of MSCs in models of infarct (injured heart), stroke (brain), or meniscus regeneration models are reviewed within the context of MSC-mediated trophic effects in tissue repair.

2,743 citations

Journal ArticleDOI
08 Apr 2004-Nature
TL;DR: Results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.
Abstract: The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.

2,239 citations

Journal ArticleDOI
TL;DR: Intracoronary transfer of autologous bone-marrow-cells promotes improvement of left-ventricular systolic function in patients after acute myocardial infarction.

2,233 citations

Journal ArticleDOI
TL;DR: This work generated highly purified human cardiomyocytes using a readily scalable system for directed differentiation that relies on activin A and BMP4, and identified a cocktail of pro-survival factors that limitsCardiomyocyte death after transplantation.
Abstract: Cardiomyocytes derived from human embryonic stem (hES) cells potentially offer large numbers of cells to facilitate repair of the infarcted heart. However, this approach has been limited by inefficient differentiation of hES cells into cardiomyocytes, insufficient purity of cardiomyocyte preparations and poor survival of hES cell-derived myocytes after transplantation. Seeking to overcome these challenges, we generated highly purified human cardiomyocytes using a readily scalable system for directed differentiation that relies on activin A and BMP4. We then identified a cocktail of pro-survival factors that limits cardiomyocyte death after transplantation. These techniques enabled consistent formation of myocardial grafts in the infarcted rat heart. The engrafted human myocardium attenuated ventricular dilation and preserved regional and global contractile function after myocardial infarction compared with controls receiving noncardiac hES cell derivatives or vehicle. The ability of hES cell-derived cardiomyocytes to partially remuscularize myocardial infarcts and attenuate heart failure encourages their study under conditions that closely match human disease.

2,173 citations