scispace - formally typeset
Search or ask a question
Author

Veronika Groh

Other affiliations: Harvard University
Bio: Veronika Groh is an academic researcher from Fred Hutchinson Cancer Research Center. The author has contributed to research in topics: NKG2D & T cell. The author has an hindex of 38, co-authored 59 publications receiving 15394 citations. Previous affiliations of Veronika Groh include Harvard University.


Papers
More filters
Journal ArticleDOI
30 Jul 1999-Science
TL;DR: An activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses is defined.
Abstract: Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.

2,916 citations

Journal ArticleDOI
17 Oct 2002-Nature
TL;DR: It is shown that binding of MIC induces endocytosis and degradation of NKG2D, a mode of T-cell silencing that may promote tumour immune evasion and, by inference, compromise host resistance to infections.
Abstract: Engagement of the NKG2D receptor by tumour-associated ligands may promote tumour rejection by stimulating innate and adaptive lymphocyte responses. In humans, NKG2D is expressed on most natural killer cells, gammadelta T cells and CD8alphabeta T cells. Ligands of NKG2D include the major histocompatibility complex class I homologues MICA and MICB, which function as signals of cellular stress. These molecules are absent from most cells and tissues but can be induced by viral and bacterial infections and are frequently expressed in epithelial tumours. MIC engagement of NKG2D triggers natural killer cells and costimulates antigen-specific effector T cells. Here we show that binding of MIC induces endocytosis and degradation of NKG2D. Expression of NKG2D is reduced markedly on large numbers of tumour-infiltrating and matched peripheral blood T cells from individuals with cancer. This systemic deficiency is associated with circulating tumour-derived soluble MICA, causing the downregulation of NKG2D and in turn severe impairment of the responsiveness of tumour-antigen-specific effector T cells. This mode of T-cell silencing may promote tumour immune evasion and, by inference, compromise host resistance to infections.

1,494 citations

Journal ArticleDOI
13 Mar 1998-Science
TL;DR: In this paper, the expression and recognition of a major histocompatibility complex (MHC) class I-related molecule, MICA, matches this localization, and the closely related MICB were recognized by intestinal epithelial T cells expressing diverse Vδ1 γδ TCRs.
Abstract: T cells with variable region Vδ1 γδ T cell receptors (TCRs) are distributed throughout the human intestinal epithelium and may function as sentinels that respond to self antigens. The expression of a major histocompatibility complex (MHC) class I–related molecule, MICA, matches this localization. MICA and the closely related MICB were recognized by intestinal epithelial T cells expressing diverse Vδ1 γδ TCRs. These interactions involved the α1α2 domains of MICA and MICB but were independent of antigen processing. With intestinal epithelial cell lines, the expression and recognition of MICA and MICB could be stress-induced. Thus, these molecules may broadly regulate protective responses by the Vδ1 γδ T cells in the epithelium of the intestinal tract.

1,080 citations

Journal ArticleDOI
TL;DR: A highly divergent human MHC class I molecule, MICA, encodes a cell surface glycoprotein, which is not associated with beta 2-microglobulin, is conformationally stable independent of conventional class I peptide ligands, and almost exclusively expressed in gastrointestinal epithelium.
Abstract: Conventional major histocompatibility complex (MHC) class I genes encode molecules that present intracellular peptide antigens to T cells. They are ubiquitously expressed and regulated by interferon gamma. Two highly divergent human MHC class I genes, MICA and MICB, are regulated by promoter heat shock elements similar to those of HSP70 genes. MICA encodes a cell surface glycoprotein, which is not associated with beta 2-microglobulin, is conformationally stable independent of conventional class I peptide ligands, and almost exclusively expressed in gastrointestinal epithelium. Thus, this MHC class I molecule may function as an indicator of cell stress and may be recognized by a subset of gut mucosal T cells in an unusual interaction.

1,036 citations

Journal ArticleDOI
TL;DR: MICA/B are tumor-associated antigens that can be recognized, in an apparently unconditional manner, by a subset of tumor-infiltrating γδ T cells, and raise the possibility that an induced expression of Mica/B, by conditions that may be related to tumor homeostasis and growth, could play a role in immune responses against tumors.
Abstract: Human MHC class I-related molecules, MICA and MICB, are stress-induced antigens that are recognized by a subset of γδ T cells expressing the variable region Vδ1. This functional association has been found to be limited to intestinal epithelium, where these T cells are prevalent and where MICA and, presumably, MICB are mainly expressed. However, increased frequencies of Vδ1 γδ T cells have been observed in various epithelial tumors; moreover, MICA/B are expressed on diverse cultured epithelial tumor cells. With freshly isolated tumor specimens, expression of MICA/B was documented in many, but not all, carcinomas of the lung, breast, kidney, ovary, prostate, and colon. In tumors that were positive for MICA/B, the frequencies of Vδ1 γδ T cells were significantly higher than in those that were negative. Vδ1 γδ T cell lines and clones derived from different tumors recognized MICA/B on autologous and heterologous tumor cells. In accord with previous evidence, no constraints were observed in these interactions, such as those imposed by specific peptide ligands. Thus, MICA/B are tumor-associated antigens that can be recognized, in an apparently unconditional manner, by a subset of tumor-infiltrating γδ T cells. These results raise the possibility that an induced expression of MICA/B, by conditions that may be related to tumor homeostasis and growth, could play a role in immune responses against tumors.

989 citations


Cited by
More filters
Journal ArticleDOI
12 Apr 2002-Science
TL;DR: A model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign is outlined.
Abstract: For over 50 years immunologists have based their thoughts, experiments, and clinical treatments on the idea that the immune system functions by making a distinction between self and nonself. Although this paradigm has often served us well, years of detailed examination have revealed a number of inherent problems. This Viewpoint outlines a model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign.

4,082 citations

Journal ArticleDOI
TL;DR: Two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment are suggested, which appear to resist immune attack through immune system exclusion or ignorance and may require distinct immunotherapeutic interventions for maximal therapeutic effect.
Abstract: Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.

2,939 citations

Journal ArticleDOI
30 Jul 1999-Science
TL;DR: An activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses is defined.
Abstract: Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.

2,916 citations

Journal ArticleDOI
TL;DR: The structure, function, and ligand specificity of the receptors responsible for NK cell recognition are reviewed and the role of EMT inNK cell recognition is reviewed.
Abstract: The integrated processing of signals transduced by activating and inhibitory cell surface receptors regulates NK cell effector functions. Here, I review the structure, function, and ligand specificity of the receptors responsible for NK cell recognition.

2,724 citations

Journal ArticleDOI
TL;DR: Human natural killer cells comprise approximately 15% of all circulating lymphocytes and have the capacity to produce abundant cytokines following activation of monocytes, but has low natural cytotoxicity and is CD16(dim) or CD16(-).

2,693 citations