scispace - formally typeset
Search or ask a question
Author

Vicent Caselles

Bio: Vicent Caselles is an academic researcher from University of Valencia. The author has contributed to research in topics: Inpainting & Image restoration. The author has an hindex of 57, co-authored 236 publications receiving 23159 citations. Previous affiliations of Vicent Caselles include University of California, Berkeley & Pompeu Fabra University.


Papers
More filters
Journal ArticleDOI
20 Jun 1995
TL;DR: A novel scheme for the detection of object boundaries based on active contours evolving in time according to intrinsic geometric measures of the image, allowing stable boundary detection when their gradients suffer from large variations, including gaps.
Abstract: A novel scheme for the detection of object boundaries is presented. The technique is based on active contours deforming according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric as defined by the image content. This geodesic approach for object segmentation allows to connect classical "snakes" based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved as showed by a number of examples. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. >

5,566 citations

Journal ArticleDOI
TL;DR: In this article, a geodesic approach based on active contours evolving in time according to intrinsic geometric measures of the image is presented. But this approach is not suitable for 3D object segmentation.
Abstract: A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.

4,967 citations

Journal ArticleDOI
TL;DR: A new model for active contours based on a geometric partial differential equation that satisfies the maximum principle and permits a rigorous mathematical analysis is proposed, which enables us to extract smooth shapes and it can be adapted to find several contours simultaneously.
Abstract: We propose a new model for active contours based on a geometric partial differential equation. Our model is intrinsec, stable (satisfies the maximum principle) and permits a rigorous mathematical analysis. It enables us to extract smooth shapes (we cannot retrieve angles) and it can be adapted to find several contours simultaneously. Moreover, as a consequence of the stability, we can design robust algorithms which can be engineed with no parameters in applications. Numerical experiments are presented.

1,948 citations

Journal ArticleDOI
TL;DR: A variational approach for filling-in regions ofMissing data in digital images is introduced, based on joint interpolation of the image gray levels and gradient/isophotes directions, smoothly extending in an automatic fashion the isophote lines into the holes of missing data.
Abstract: A variational approach for filling-in regions of missing data in digital images is introduced. The approach is based on joint interpolation of the image gray levels and gradient/isophotes directions, smoothly extending in an automatic fashion the isophote lines into the holes of missing data. This interpolation is computed by solving the variational problem via its gradient descent flow, which leads to a set of coupled second order partial differential equations, one for the gray-levels and one for the gradient orientations. The process underlying this approach can be considered as an interpretation of the Gestaltist's principle of good continuation. No limitations are imposed on the topology of the holes, and all regions of missing data can be simultaneously processed, even if they are surrounded by completely different structures. Applications of this technique include the restoration of old photographs and removal of superimposed text like dates, subtitles, or publicity. Examples of these applications are given. We conclude the paper with a number of theoretical results on the proposed variational approach and its corresponding gradient descent flow.

969 citations

30 Nov 2009
TL;DR: Fornasier and Romlau as mentioned in this paper discuss various theoretical and practical topics related to total variation-based image reconstruction, focusing first on some theoretical results on functions which minimize the total variation, and in a second part, describe a few standard and less standard algorithms to minimize the overall variation in a finite-differences setting.
Abstract: These are the lecture notes of a course taught in Linz in Sept., 2009, at the school "summer school on sparsity", organized by Massimo Fornasier and Ronny Romlau. They address various theoretical and practical topics related to Total Variation-based image reconstruction. They focu first on some theoretical results on functions which minimize the total variation, and in a second part, describe a few standard and less standard algorithms to minimize the total variation in a finite-differences setting, with a series of applications from simple denoising to stereo, or deconvolution issues, and even more exotic uses like the minimization of minimal partition problems.

413 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets is proposed, which can detect objects whose boundaries are not necessarily defined by the gradient.
Abstract: We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.

10,404 citations

Journal ArticleDOI
TL;DR: The methods and software engineering philosophy behind this new tool, ITK-SNAP, are described and the results of validation experiments performed in the context of an ongoing child autism neuroimaging study are provided, finding that SNAP is a highly reliable and efficient alternative to manual tracing.

6,669 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: A more powerful, iterative version of the optimisation of the graph-cut approach is developed and the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result.
Abstract: The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for "border matting" has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show that for moderately difficult examples the proposed method outperforms competitive tools.

5,670 citations

Journal ArticleDOI
20 Jun 1995
TL;DR: A novel scheme for the detection of object boundaries based on active contours evolving in time according to intrinsic geometric measures of the image, allowing stable boundary detection when their gradients suffer from large variations, including gaps.
Abstract: A novel scheme for the detection of object boundaries is presented. The technique is based on active contours deforming according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric as defined by the image content. This geodesic approach for object segmentation allows to connect classical "snakes" based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved as showed by a number of examples. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. >

5,566 citations