scispace - formally typeset
Search or ask a question
Author

Victor B. F. Gomes

Other affiliations: University of Sheffield
Bio: Victor B. F. Gomes is an academic researcher from University of Cambridge. The author has contributed to research in topics: HOL & Proof assistant. The author has an hindex of 9, co-authored 26 publications receiving 253 citations. Previous affiliations of Victor B. F. Gomes include University of Sheffield.

Papers
More filters
Journal ArticleDOI
12 Oct 2017
TL;DR: In this paper, the authors focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data.
Abstract: Data replication is used in distributed systems to maintain up-to-date copies of shared data across multiple computers in a network. However, despite decades of research, algorithms for achieving consistency in replicated systems are still poorly understood. Indeed, many published algorithms have later been shown to be incorrect, even some that were accompanied by supposed mechanised proofs of correctness. In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework in the Isabelle/HOL interactive proof assistant for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter. We find that our framework is highly reusable, developing proofs of correctness for the latter two CRDTs in a few hours and with relatively little CRDT-specific code.

67 citations

Journal ArticleDOI
TL;DR: A principled modular approach to the development of construction and verification tools for imperative programs, in which the control flow and the data flow are cleanly separated, is presented.
Abstract: We present a principled modular approach to the development of construction and verification tools for imperative programs, in which the control flow and the data flow are cleanly separated. Our simplest verification tool uses Kleene algebra with tests for the control flow of while-programs and their standard relational semantics for the data flow. It is expanded to a basic program construction tool by adding an operation for the specification statement and one single axiom. To include recursive procedures, Kleene algebras with tests are expanded further to quantales with tests. In this more expressive setting, iteration and the specification statement can be defined explicitly and stronger program transformation rules can be derived. Programming our approach in the Isabelle/HOL interactive theorem prover yields simple lightweight mathematical components as well as program construction and verification tools that are correct by construction themselves. Verification condition generation and program construction rules are based on equational reasoning and supported by powerful Isabelle tactics and automated theorem proving. A number of examples shows our tools at work.

37 citations

Book ChapterDOI
29 Jun 2015
TL;DR: An algebraic approach to the design of program construction and verification tools is applied to separation logic, and this separation of concerns makes an implementation in the Isabelle/HOL proof assistant simple and highly automatic.
Abstract: An algebraic approach to the design of program construction and verification tools is applied to separation logic. The control-flow level is modelled by power series with convolution as separating conjunction. A generic construction lifts resource monoids to assertion and predicate transformer quantales. The data domain is captured by concrete store-heap models. These are linked to the separation algebra by soundness proofs. Verification conditions and transformation or refinement laws are derived by equational reasoning within the predicate transformer quantale. This separation of concerns makes an implementation in the Isabelle/HOL proof assistant simple and highly automatic. The resulting tool is itself correct by construction; it is explained on three simple examples.

32 citations

Journal ArticleDOI
02 Jan 2019
TL;DR: This paper aims to reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code, and presents two coherent proposals, tracking provenance via integers and not; both address many design questions.
Abstract: The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot be treated as either purely abstract or purely concrete entities: the language exposes their representations, but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs with de facto standard usage --- which itself is difficult to investigate. In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and not; both address many design questions. We highlight some pros and cons and open questions, and illustrate the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it with the Cerberus semantics for much of the rest of C, which we have made substantially more complete and robust, and equipped with a web-interface GUI. This allows us to experimentally assess our proposals on those test cases. To assess their viability with respect to larger bodies of C code, we analyse the changes required and the resulting behaviour for a port of FreeBSD to CHERI, a research architecture supporting hardware capabilities, which (roughly speaking) traps on the memory safety violations which our proposals deem undefined behaviour. We also develop a new runtime instrumentation tool to detect possible provenance violations in normal C code, and apply it to some of the SPEC benchmarks. We compare our proposal with a source-language variant of the twin-allocation LLVM semantics proposal of Lee et al. Finally, we describe ongoing interactions with WG14, exploring how our proposals could be incorporated into the ISO standard.

29 citations

Book ChapterDOI
09 Nov 2016
TL;DR: Modal Kleene algebras are relatives of dynamic logics that support program construction and verification by equational reasoning and their application in implementing versatile program correctness components in interactive theorem provers such as Isabelle/HOL is described.
Abstract: Modal Kleene algebras are relatives of dynamic logics that support program construction and verification by equational reasoning. We describe their application in implementing versatile program correctness components in interactive theorem provers such as Isabelle/HOL. Starting from a weakest precondition based component with a simple relational store model, we show how variants for Hoare logic, strongest postconditions and program refinement can be built in a principled way. Modularity of the approach is demonstrated by variants that capture program termination and recursion, memory models for programs with pointers, and program trace semantics.

23 citations


Cited by
More filters
01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Journal ArticleDOI
TL;DR: This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants and calls them hammers, which give the authors of formal proofs a strong "one-stroke" tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search.
Abstract: This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong "one-stroke" tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of richer logics to their formalisms, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-style efforts.

155 citations

Journal ArticleDOI
12 Oct 2017
TL;DR: In this paper, the authors focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data.
Abstract: Data replication is used in distributed systems to maintain up-to-date copies of shared data across multiple computers in a network. However, despite decades of research, algorithms for achieving consistency in replicated systems are still poorly understood. Indeed, many published algorithms have later been shown to be incorrect, even some that were accompanied by supposed mechanised proofs of correctness. In this work, we focus on the correctness of Conflict-free Replicated Data Types (CRDTs), a class of algorithm that provides strong eventual consistency guarantees for replicated data. We develop a modular and reusable framework in the Isabelle/HOL interactive proof assistant for verifying the correctness of CRDT algorithms. We avoid correctness issues that have dogged previous mechanised proofs in this area by including a network model in our formalisation, and proving that our theorems hold in all possible network behaviours. Our axiomatic network model is a standard abstraction that accurately reflects the behaviour of real-world computer networks. Moreover, we identify an abstract convergence theorem, a property of order relations, which provides a formal definition of strong eventual consistency. We then obtain the first machine-checked correctness theorems for three concrete CRDTs: the Replicated Growable Array, the Observed-Remove Set, and an Increment-Decrement Counter. We find that our framework is highly reusable, developing proofs of correctness for the latter two CRDTs in a few hours and with relatively little CRDT-specific code.

67 citations

Journal ArticleDOI
TL;DR: In this paper, an operational semantics of the essence of serverless computing is presented, which is called lambda_\Lambda$, which models all the low-level details that serverless functions can observe.
Abstract: Serverless computing (also known as functions as a service) is a new cloud computing abstraction that makes it easier to write robust, large-scale web services. In serverless computing, programmers write what are called serverless functions, and the cloud platform transparently manages the operating system, resource allocation, load-balancing, and fault tolerance. When demand for the service spikes, the platform automatically allocates additional hardware to the service and manages load-balancing; when demand falls, the platform silently deallocates idle resources; and when the platform detects a failure, it transparently retries affected requests. In 2014, Amazon Web Services introduced the first serverless platform, AWS Lambda, and similar abstractions are now available on all major cloud computing platforms. Unfortunately, the serverless computing abstraction exposes several low-level operational details that make it hard for programmers to write and reason about their code. This paper sheds light on this problem by presenting $\lambda_\Lambda$, an operational semantics of the essence of serverless computing. Despite being a small (half a page) core calculus, $\lambda_\Lambda$ models all the low-level details that serverless functions can observe. To show that $\lambda_\Lambda$ is useful, we present three applications. First, to ease reasoning about code, we present a simplified naive semantics of serverless execution and precisely characterize when the naive semantics and $\lambda_\Lambda$ coincide. Second, we augment $\lambda_\Lambda$ with a key-value store to allow reasoning about stateful serverless functions. Third, since a handful of serverless platforms support serverless function composition, we show how to extend $\lambda_\Lambda$ with a composition language. We have implemented this composition language and show that it outperforms prior work.

55 citations

Journal ArticleDOI
10 Oct 2019
TL;DR: In this paper, the authors present an operational semantics of serverless computing called λλ, which models all the low-level details that serverless functions can observe, and show how to extend it with a composition language.
Abstract: Serverless computing (also known as functions as a service) is a new cloud computing abstraction that makes it easier to write robust, large-scale web services. In serverless computing, programmers write what are called serverless functions, which are programs that respond to external events. When demand for the serverless function spikes, the platform automatically allocates additional hardware and manages load-balancing; when demand falls, the platform silently deallocates idle resources; and when the platform detects a failure, it transparently retries affected requests. In 2014, Amazon Web Services introduced the first serverless platform, AWS Lambda, and similar abstractions are now available on all major cloud computing platforms. Unfortunately, the serverless computing abstraction exposes several low-level operational details that make it hard for programmers to write and reason about their code. This paper sheds light on this problem by presenting λλ, an operational semantics of the essence of serverless computing. Despite being a small (half a page) core calculus, λλ models all the low-level details that serverless functions can observe. To show that λλ is useful, we present three applications. First, to ease reasoning about code, we present a simplified naive semantics of serverless execution and precisely characterize when the naive semantics and λλ coincide. Second, we augment λλ with a key-value store to allow reasoning about stateful serverless functions. Third, since a handful of serverless platforms support serverless function composition, we show how to extend λλ with a composition language and show that our implementation can outperform prior work.

50 citations