scispace - formally typeset
Search or ask a question
Author

Victor C. Li

Bio: Victor C. Li is an academic researcher from University of Michigan. The author has contributed to research in topics: Engineered cementitious composite & Ultimate tensile strength. The author has an hindex of 95, co-authored 498 publications receiving 30071 citations. Previous affiliations of Victor C. Li include Georgia Institute of Technology & Southeast University.


Papers
More filters
Journal ArticleDOI
21 May 2015-Cell
TL;DR: This work has developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing, which shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays.

2,894 citations

Journal ArticleDOI
TL;DR: A survey of the research and development of Engineered Cementitious Composites (ECC) over the last decade since its invention in the early 1990's is presented in this paper.
Abstract: This article surveys the research and development of Engineered Cementitious Composites (ECC) over the last decade since its invention in the early 1990's. The importance of micromechanics in the materials design strategy is emphasized. Observations of unique characteristics of ECC based on a broad range of theoretical and experimental research are examined. The advantageous use of ECC in certain categories of structural, and repair and retrofit applications is reviewed. While reflecting on past advances, future challenges for continued development and deployment of ECC are noted. This article is based on a keynote address given at the International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) - Applications and Evaluations, sponsored by the Japan Concrete Institute, and held in October 2002 at Takayama, Japan.

1,178 citations

Journal ArticleDOI
TL;DR: In this article, a polyvinyl alcohol fiber-reinforced engineered cementitious composite (PVA-ECC) was developed for structural applications under the performance-driven design approach.
Abstract: A high-performance polyvinyl alcohol fiber-reinforced engineered cementitious composite (PVA-ECC) was developed for structural applications under the performance-driven design approach. Fiber, matrix, and fiber/matrix interfacial properties were tailored to micromechanics models to satisfy the pseudo strain-hardening condition. This research experimentally investigated the effects of fiber surface treatment and sand content on the composite performance. Results from uniaxial tensile tests show an ultimate strain exceeding 4%, as well as an ultimate strength of 4.5 MPa for the composites, with a moderate fiber volume fraction of 2%. The specimens reveal saturated multiple cracking with crack width at ultimate strain limited to below 100 nanometers. The underlying reason of the distinctly different tensile behavior between normal fiber-reinforced concrete and PVA-ECC is highlighted by the comparison of complementary energy from their fiber bridging stress and crack opening curves.

1,022 citations

Journal ArticleDOI
TL;DR: In this article, the pseudostrain-hardening phenomenon of brittle matrix composites reinforced with discontinuous flexible and randomly distributed fibers is analyzed based on a cohesive crack-mechanics approach, and the first crack strength and strain are derived in terms of fiber, matrix, and interface micromechanical properties.
Abstract: This paper analyzes the pseudostrain‐hardening phenomenon of brittle matrix composites reinforced with discontinuous flexible and randomly distributed fibers, based on a cohesive crack‐mechanics approach. The first crack strength and strain are derived in terms of fiber, matrix, and interface micromechanical properties. Conditions for steady‐state cracking and multiple cracking are found to depend on two nondimensionalized parameters that embody all relevant material micromechanical parameters. The results are therefore quite general and applicable to a variety of composite‐material systems. Phrased in terms of a failure‐mechanism map, various uniaxial load‐deformation behaviors for discontinuous fiber composites can be predicted. The influence of a snubbing effect due to local fiber/matrix interaction for randomly oriented crack‐bridging fibers on the composite properties is also studied.

975 citations

Journal ArticleDOI
TL;DR: In this article, the PVA-ECC was developed for the context of material design under the guidance of micromechanical tools, where the fiber/matrix interface may be engineered to accommodate the requirements imposed by the micro-mechanical models, thus highlighting the importance of interface tailoring on composite performance.
Abstract: This paper presents the development of the PVA-ECC in the context of material design under the guidance of micromechanical tools. Specifically, this work illustrates how the fiber/matrix interface may be engineered to accommodate the requirements imposed by the micromechanical models, thus highlighting the importance of interface tailoring on the composite performance. This micromechanics-based material design approach is broadly applicable to achieving high-performance composites with low fiber content for cost-effective structural applications.

625 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations

Journal ArticleDOI
21 May 2015-Cell
TL;DR: Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together.

5,506 citations

Journal ArticleDOI
TL;DR: An update to the Galaxy-based web server deepTools, which allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches, is presented.
Abstract: We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available.

4,359 citations

Journal ArticleDOI
TL;DR: A droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample is described and sequence variation in the transcriptome data is used to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
Abstract: Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system’s technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system’s ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. Single-cell gene expression analysis is challenging. This work describes a new droplet-based single cell RNA-seq platform capable of processing tens of thousands of cells across 8 independent samples in minutes, and demonstrates cellular subtypes and host–donor chimerism in transplant patients.

4,219 citations

Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations