scispace - formally typeset
Search or ask a question
Author

Victor Cabrera

Bio: Victor Cabrera is an academic researcher. The author has contributed to research in topics: Polishing & Lapping. The author has an hindex of 3, co-authored 3 publications receiving 35 citations.

Papers
More filters
Proceedings ArticleDOI
TL;DR: In this paper, a new pressure distribution model was proposed to calculate the wear produced by a square tool on a glass border moving along straight lines, which presents like a skin effect.
Abstract: In the polishing process, the wear tends to be greater when the tool extends beyond the edge of the workpiece. A linear pressure distribution (between the tool and the workpiece) has been used to explain this effect, however, this model also can predict negative pressures. This could mean that material is deposited instead of being removed. We present a new pressure distribution proposal, which presents like a skin effect. This means that the pressure is significantly higher at the border points than at internal points of the glass. With this model the material removal at the border points is increased considerably since, according to Preston, the wear is proportional to the pressure. This pressure distribution model is applied to calculate the wear produced by a square tool on a glass border moving along straight lines.

26 citations

Proceedings ArticleDOI
TL;DR: In this article, a hydrodynamic radial tool (HyDra) is used to expels a suspension of water and polishing particles radially on glass. But the tool is not suitable for fabrication of optical flat and Schmidt surfaces.
Abstract: We report experimental results and analysis about a new hydrodynamic radial tool (HyDra, patent pending), which expels a suspension of water and polishing particles radially on glass. With this method it is possible to locally shape optical surfaces. The depth of material removed by HyDra grows linearly with the time. The removal rate is independent of the velocity between the tool and the glass element. The HyDra has been used to fabricate successfully an optical flat and Schmidt surface.

7 citations

Proceedings ArticleDOI
TL;DR: In this article, a hydrodynamic radial polishing tool (HyDRa) is presented for the corrective lapping and fine polishing of diverse materials by means of a low-cost abrasive flux and a hydrostatic suspension system that avoids contact of the tool with the working surface.
Abstract: In order to overcome classic polishing techniques, a novel hydrodynamic radial polishing tool (HyDRa) is presented; it is useful for the corrective lapping and fine polishing of diverse materials by means of a low-cost abrasive flux and a hydrostatic suspension system that avoids contact of the tool with the working surface. This tool enables the work on flat or curved surfaces of currently up to two and a half meters in diameter. It has the advantage of avoiding fallen edges during the polishing process as well as reducing tool wear out and deformation. The functioning principle is based on the generation of a high-velocity, high-pressure, abrasive emulsion flux with radial geometry. The polishing process is repeatable by means of the control of the tool operational parameters, achieving high degrees of precision and accuracy on optical and semiconductor surfaces, with removal rates of up to 9 mm 3 /hour and promising excellent surface polishing qualities. An additional advantage of this new tool is the possibility to perform interferometric measurements during the polishing process without the need of dismounting the working surface. A series of advantages of this method, numerical simulations and experimental results are described.

3 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: A new parametric model is provided that fits 5 parameters to measured data to accurately predict the edge TIF for cases of a polishing tool that is either spinning or orbiting over the edge of the workpiece.
Abstract: Computer controlled polishing requires accurate knowledge of the tool influence function (TIF) for the polishing tool (i.e. lap). While a linear Preston's model for material removal allows the TIF to be determined for most cases, nonlinear removal behavior as the tool runs over the edge of the part introduces a difficulty in modeling the edge TIF. We provide a new parametric model that fits 5 parameters to measured data to accurately predict the edge TIF for cases of a polishing tool that is either spinning or orbiting over the edge of the workpiece.

68 citations

Journal ArticleDOI
TL;DR: A new model in which the pressure is higher at the edge is applied to the case of a circular tool that polishes a circular workpiece and correctly predicts that a greater amount of material is removed from the edge of the workpiece.
Abstract: In a polishing process the wear is greater at the edge when the tool extends beyond the border of the workpiece. To explain this effect, we propose a new model in which the pressure is higher at the edge. This model is applied to the case of a circular tool that polishes a circular workpiece. Our model correctly predicts that a greater amount of material is removed from the edge of the workpiece.

57 citations

Journal ArticleDOI
TL;DR: An experimental confirmation of FJP figuring was demonstrated by machining a one-dimensional depth profile on a flat sample and the successful implementation of the discrete convolution algorithm to solve the dwell function in optical manufacturing.
Abstract: Considering the special characteristics of the removal function with the ring-shaped profile in fluid jet polishing (FJP), we present an effective method called the discrete convolution algorithm to compute the dwell function for controlling the figuring process. This method avoids the deconvolution operation, which usually fails to converge. Then an experimental confirmation of FJP figuring was demonstrated by machining a one-dimensional depth profile on a flat sample. The profile was figured from 0.914lambda(lambda=632.8 nm) peak to valley (PV) to 0.260lambda. This experiment demonstrated the successful implementation of the algorithm to solve the dwell function in optical manufacturing.

33 citations

Journal ArticleDOI
TL;DR: An effective method is proposed to reduce the edge error in the polishing of large mirrors by using an industrial robotic polisher and the edge roll-off error is effectively suppressed.
Abstract: In the ultra-precision manufacturing of large optical surfaces, industrial robots with small tools have the potential to become an intelligent and economical choice of surface polishing. But one of the most challenging problems is the severe edge roll-off error caused by the small tools. In this paper, an effective method is proposed to reduce the edge error in the polishing of large mirrors. The convergence rate of the form quality can be improved by adjusting the polishing removal amount. A generic space-variant deconvolution algorithm is developed to precisely calculate the dwell time. Experiments are conducted using an industrial robotic polisher and the edge roll-off error is effectively suppressed. As a consequence the polishing accuracy and efficiency of the robotic polishing technology can be improved significantly.

19 citations