scispace - formally typeset
Search or ask a question
Author

Victor L. Villemagne

Bio: Victor L. Villemagne is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Alzheimer's disease & Dementia. The author has an hindex of 81, co-authored 524 publications receiving 27788 citations. Previous affiliations of Victor L. Villemagne include Hollywood Private Hospital & Florey Institute of Neuroscience and Mental Health.


Papers
More filters
Journal ArticleDOI
TL;DR: These projections suggest a prolonged preclinical phase of AD in which Aβ deposition reaches the authors' threshold of positivity at 17·0 (95% CI 14·9-19·9) years, hippocampal atrophy at 4·2 (3·6-5·1] years, and memory impairment at 3·3 (2·5-4·5) years before the onset of dementia (clinical dementia rating score 1).
Abstract: Summary Background Similar to most chronic diseases, Alzheimer's disease (AD) develops slowly from a preclinical phase into a fully expressed clinical syndrome. We aimed to use longitudinal data to calculate the rates of amyloid β (Aβ) deposition, cerebral atrophy, and cognitive decline. Methods In this prospective cohort study, healthy controls, patients with mild cognitive impairment (MCI), and patients with AD were assessed at enrolment and every 18 months. At every visit, participants underwent neuropsychological examination, MRI, and a carbon-11-labelled Pittsburgh compound B ( 11 C-PiB) PET scan. We included participants with three or more 11 C-PiB PET follow-up assessments. Aβ burden was expressed as 11 C-PiB standardised uptake value ratio (SUVR) with the cerebellar cortex as reference region. An SUVR of 1·5 was used to discriminate high from low Aβ burdens. The slope of the regression plots over 3–5 years was used to estimate rates of change for Aβ deposition, MRI volumetrics, and cognition. We included those participants with a positive rate of Aβ deposition to calculate the trajectory of each variable over time. Findings 200 participants (145 healthy controls, 36 participants with MCI, and 19 participants with AD) were assessed at enrolment and every 18 months for a mean follow-up of 3·8 (95% CI CI 3·6–3·9) years. At baseline, significantly higher Aβ burdens were noted in patients with AD (2·27, SD 0·43) and those with MCI (1·94, 0·64) than in healthy controls (1·38, 0·39). At follow-up, 163 (82%) of the 200 participants showed positive rates of Aβ accumulation. Aβ deposition was estimated to take 19·2 (95% CI 16·8–22·5) years in an almost linear fashion—with a mean increase of 0·043 (95% CI 0·037–0·049) SUVR per year—to go from the threshold of 11 C-PiB positivity (1·5 SUVR) to the levels observed in AD. It was estimated to take 12·0 (95% CI 10·1–14·9) years from the levels observed in healthy controls with low Aβ deposition (1·2 [SD 0·1] SUVR) to the threshold of 11 C-PiB positivity. As AD progressed, the rate of Aβ deposition slowed towards a plateau. Our projections suggest a prolonged preclinical phase of AD in which Aβ deposition reaches our threshold of positivity at 17·0 (95% CI 14·9–19·9) years, hippocampal atrophy at 4·2 (3·6–5·1) years, and memory impairment at 3·3 (2·5–4·5) years before the onset of dementia (clinical dementia rating score 1). Interpretation Aβ deposition is slow and protracted, likely to extend for more than two decades. Such predictions of the rate of preclinical changes and the onset of the clinical phase of AD will facilitate the design and timing of therapeutic interventions aimed at modifying the course of this illness. Funding Science and Industry Endowment Fund (Australia), The Commonwealth Scientific and Industrial Research Organisation (Australia), The National Health and Medical Research Council of Australia Program and Project Grants, the Austin Hospital Medical Research Foundation, Victorian State Government, The Alzheimer's Drug Discovery Foundation, and the Alzheimer's Association.

1,733 citations

Journal ArticleDOI
08 Feb 2018-Nature
TL;DR: The measurement of high-performance plasma amyloid-β biomarkers by immunoprecipitation coupled with mass spectrometry demonstrates the potential clinical utility of plasma biomarkers in predicting brain amyloids-β burden at an individual level and shows cost–benefit and scalability advantages over current techniques.
Abstract: To facilitate clinical trials of disease-modifying therapies for Alzheimer's disease, which are expected to be most efficacious at the earliest and mildest stages of the disease, supportive biomarker information is necessary. The only validated methods for identifying amyloid-β deposition in the brain-the earliest pathological signature of Alzheimer's disease-are amyloid-β positron-emission tomography (PET) imaging or measurement of amyloid-β in cerebrospinal fluid. Therefore, a minimally invasive, cost-effective blood-based biomarker is desirable. Despite much effort, to our knowledge, no study has validated the clinical utility of blood-based amyloid-β markers. Here we demonstrate the measurement of high-performance plasma amyloid-β biomarkers by immunoprecipitation coupled with mass spectrometry. The ability of amyloid-β precursor protein (APP)669-711/amyloid-β (Aβ)1-42 and Aβ1-40/Aβ1-42 ratios, and their composites, to predict individual brain amyloid-β-positive or -negative status was determined by amyloid-β-PET imaging and tested using two independent data sets: a discovery data set (Japan, n = 121) and a validation data set (Australia, n = 252 including 111 individuals diagnosed using 11C-labelled Pittsburgh compound-B (PIB)-PET and 141 using other ligands). Both data sets included cognitively normal individuals, individuals with mild cognitive impairment and individuals with Alzheimer's disease. All test biomarkers showed high performance when predicting brain amyloid-β burden. In particular, the composite biomarker showed very high areas under the receiver operating characteristic curves (AUCs) in both data sets (discovery, 96.7%, n = 121 and validation, 94.1%, n = 111) with an accuracy approximately equal to 90% when using PIB-PET as a standard of truth. Furthermore, test biomarkers were correlated with amyloid-β-PET burden and levels of Aβ1-42 in cerebrospinal fluid. These results demonstrate the potential clinical utility of plasma biomarkers in predicting brain amyloid-β burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening.

1,049 citations

Journal ArticleDOI
TL;DR: Pittsburgh Compound B PET findings match histopathologic reports of β-amyloid (Aβ) distribution in aging and dementia, and suggest that Aβ may influence the development of dementia with Lewy bodies, and therefore strategies to reduce A β may benefit this condition.
Abstract: I read the article by Rowe et al.1 with interest. Diagnosing Alzheimer disease (AD) in a preclinical phase would enable early implementation of therapeutic interventions which might have long-term benefits. PET technology by using the Pittsburgh compound (PiB) allows detection of amyloid deposits in the brain.1,2 Pathologic studies indicate that amyloid deposition is present in cortical regions of all patients with AD even before the onset of dementia.3 One application of PiB-PET may be all that is necessary to identify the neuropathologic changes of AD in clinically normal individuals prior to the development of cognitive changes. These individuals would be considered to have preclinical AD. PET studies performed with PiB in cognitively intact subjects have shown that between 15 and 22% of them had abnormal scans.1,2 The objective is to determine who and when someone will become demented. It is and will be unclear because the proportion of subjects with cerebral amyloid deposits is, and will be, higher than the proportion of people with clinical AD. Otherwise, it is impossible to understand pathologic observations which indicate that more than 30% of older persons over age 75 die without any clinical evidence of dementia despite showing amyloid deposits and pathologic changes characteristic of AD.3 Presumably all of them would have abnormal PiB-PET scans. Amyloid deposition is not synonymous with clinical AD unless we assume that everyone with an abnormal PiB-PET scan would develop AD. Even in this case, many of them (70% according to pathologic data and prevalence estimates of AD) will die without dementia in the …

1,000 citations

Journal ArticleDOI
TL;DR: Correlations of metabolic increases in the dorsolateral prefrontal cortex, medial temporal lobe, and cerebellum with self-reports of craving suggest that a distributed neural network, which integrates emotional and cognitive aspects of memory, links environmental cues with cocaine craving.
Abstract: Evidence accumulated over more than 45 years has indicated that environmental stimuli can induce craving for drugs of abuse in individuals who have addictive disorders. However, the brain mechanisms that subserve such craving have not been elucidated. Here a positron emission tomographic study shows increased glucose metabolism in cortical and limbic regions implicated in several forms of memory when human volunteers who abuse cocaine are exposed to drug-related stimuli. Correlations of metabolic increases in the dorsolateral prefrontal cortex, medial temporal lobe (amygdala), and cerebellum with self-reports of craving suggest that a distributed neural network, which integrates emotional and cognitive aspects of memory, links environmental cues with cocaine craving.

900 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
TL;DR: A conceptual framework and operational research criteria are proposed, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies and it is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD.
Abstract: The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from "normal" cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.

5,671 citations

Journal ArticleDOI
TL;DR: This research framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms and envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD.
Abstract: In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

5,126 citations