scispace - formally typeset
Search or ask a question
Author

Victor M. Bright

Bio: Victor M. Bright is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Surface micromachining & Atomic layer deposition. The author has an hindex of 47, co-authored 301 publications receiving 8109 citations. Previous affiliations of Victor M. Bright include Georgia Institute of Technology & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of surface tension-powered self-assembly of microstructures is presented, and the demonstrated fabrication processes for accurately determining the assembled shape are discussed, and limits on accuracy and structural distortion are considered.
Abstract: Because of the low dimensional power of its force scaling law, surface tension is appropriate for carrying out reshaping and assembly in the microstructure size domain. This paper reviews work on surface tension powered self-assembly of microstructures. The existing theoretical approaches for rotational assembly are unified. The demonstrated fabrication processes are compared. Mechanisms for accurately determining the assembled shape are discussed, and the limits on accuracy and structural distortion are considered. Applications in optics, electronics and mechanics are described. More complex operations (including the combination of self-assembly and self-organization) are also reviewed.

373 citations

Journal ArticleDOI
TL;DR: An atom Michelson interferometer is implemented on an "atom chip" that uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate.
Abstract: An atom Michelson interferometer is implemented on an ``atom chip.'' The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

352 citations

Journal ArticleDOI
TL;DR: The fabrication and characterization of bulk micromachined pressure sensors based on individual single-walled carbon nanotubes (SWNTs) as the active electromechanical transducer elements are reported on.
Abstract: We report on the fabrication and characterization of bulk micromachined pressure sensors based on individual single-walled carbon nanotubes (SWNTs) as the active electromechanical transducer elements. The electromechanical sensor device consists of an individual electrically connected SWNT adsorbed on top of a 100-nm-thick atomic layer deposited (ALD) circular alumina (Al2O3) membrane with a radius in the range of 50−100 μm. A white light interferometer (WLI) was used to measure the deflection of the membrane due to differential pressure, and the mechanical properties of the device were characterized by bulge testing. Finally, we performed the first electromechanical measurements on strained metallic SWNTs adhering to a membrane and found a piezoresistive gauge factor of approximately 210 for metallic SWNTs.

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate how combinations of two or more electro-thermal actuators can be applied to a variety of basic building-block micromechanical devices.
Abstract: Electro-thermal (E-T) actuators have been developed to complement the capabilities of electrostatic actuators. The thermal actuators presented here can be arrayed to generate high forces. Equally significant is that the single actuators and arrays of actuators operate at voltages and currents that are directly compatible with standard microelectronics. This paper demonstrates how combinations of two or more electro-thermal actuators can be applied to a variety of basic building-block micromechanical devices: array of ten lateral actuators; array of ten vertical actuators; vertically actuated two-axis tilting mirror; corner-cube retroreflector actuated by lateral array; grippers over the die edge with flip-over wiring; rotary stepper motor; flip-up optical grating on rotary stepper motor; linear stepper motor; and a linear stepper motor for assembly of hinged structures.

260 citations

Patent
24 Jan 1997
TL;DR: In this article, a movable micromirror assembly with four flexible support arms mounted in turn on a center support post is presented. And the support system is positioned beneath the mirror so that no reflective service area is lost to these features.
Abstract: Provided is a movable micromirror assembly wherein a mirror is mounted on, e.g. four flexible support arms, which are mounted in turn on a center support post. The post and arms resiliently support such mirror over, e.g. four address electrodes. The micromirror device is actuated like a parallel-plate capacitor by applying an address potential to the electrodes, which draw a part or all of the mirror toward same, countered by the spring force of the proximate support arms. Motion of the micromirror can be achieved along two axes since the device can be tilted and retracted according to the varying potentials applied to each of the four electrodes and the attractive force applied in turn to various portions of the micromirror in spaced proximity therewith. The support system of the micromirror is positioned beneath the mirror so that no reflective service area is lost to these features. Accordingly individual micromirror assemblies can be placed close to each other, in side by side array, to maximize the active surface area of such array. Thus each such micromirror can be tilted on two axes to scan one or more fields of regard and also can simultaneously be retracted or elevated to a desired depth to remove phase aberrations in the incident image by discreetly lengthening or shortening the optical path of the image reflected therefrom.

249 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI

4,756 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations