scispace - formally typeset
Search or ask a question
Author

Victor Namias

Bio: Victor Namias is an academic researcher from Purdue University. The author has contributed to research in topics: Fourier transform & Kontorovich–Lebedev transform. The author has an hindex of 2, co-authored 2 publications receiving 1493 citations.

Papers
More filters
Journal ArticleDOI
Victor Namias1
TL;DR: In this article, a generalized operational calculus is developed, paralleling the familiar one for the ordinary transform, which provides a convenient technique for solving certain classes of ordinary and partial differential equations which arise in quantum mechanics from classical quadratic hamiltonians.
Abstract: We introduce the concept of Fourier transforms of fractional order, the ordinary Fourier transform being a transform of order 1. The integral representation of this transform can be used to construct a table of fractional order Fourier transforms. A generalized operational calculus is developed, paralleling the familiar one for the ordinary transform. Its application provides a convenient technique for solving certain classes of ordinary and partial differential equations which arise in quantum mechanics from classical quadratic hamiltonians. The method of solution is first illustrated by its application to the free and to the forced quantum mechanical harmonic oscillator. The corresponding Green's functions are obtained in closed form. The new technique is then extended to three-dimensional problems and applied to the quantum mechanical description of the motion of electrons in a constant magnetic field. The stationary states, energy levels and the evolution of an initial wave packet are obtained by a systematic application of the rules of the generalized operational calculus. Finally, the method is applied to the second order partial differential equation with time-dependent coefficients describing the quantum mechanical dynamics of electrons in a time-varying magnetic field.

1,523 citations

Journal ArticleDOI
Victor Namias1

75 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors briefly introduce the functional Fourier transform and a number of its properties and present some new results: the interpretation as a rotation in the time-frequency plane, and the FRFT's relationships with time- frequencies such as the Wigner distribution, the ambiguity function, the short-time Fouriertransform and the spectrogram.
Abstract: The functional Fourier transform (FRFT), which is a generalization of the classical Fourier transform, was introduced a number of years ago in the mathematics literature but appears to have remained largely unknown to the signal processing community, to which it may, however, be potentially useful. The FRFT depends on a parameter /spl alpha/ and can be interpreted as a rotation by an angle /spl alpha/ in the time-frequency plane. An FRFT with /spl alpha/=/spl pi//2 corresponds to the classical Fourier transform, and an FRFT with /spl alpha/=0 corresponds to the identity operator. On the other hand, the angles of successively performed FRFTs simply add up, as do the angles of successive rotations. The FRFT of a signal can also be interpreted as a decomposition of the signal in terms of chirps. The authors briefly introduce the FRFT and a number of its properties and then present some new results: the interpretation as a rotation in the time-frequency plane, and the FRFT's relationships with time-frequency representations such as the Wigner distribution, the ambiguity function, the short-time Fourier transform and the spectrogram. These relationships have a very simple and natural form and support the FRFT's interpretation as a rotation operator. Examples of FRFTs of some simple signals are given. An example of the application of the FRFT is also given. >

1,698 citations

Journal ArticleDOI
TL;DR: An algorithm for efficient and accurate computation of the fractional Fourier transform for signals with time-bandwidth product N, which computes the fractionsal transform in O(NlogN) time.
Abstract: An algorithm for efficient and accurate computation of the fractional Fourier transform is given. For signals with time-bandwidth product N, the presented algorithm computes the fractional transform in O(NlogN) time. A definition for the discrete fractional Fourier transform that emerges from our analysis is also discussed.

1,034 citations

Journal ArticleDOI
TL;DR: In this article, the degree p = 1 is assigned to the ordinary Fourier transform and the degree P = 1/2 to the fractional transform, where p is the degree of the optical fiber.
Abstract: In this study the degree p = 1 is assigned to the ordinary Fourier transform The fractional Fourier transform, for example with degree P = 1/2, performs an ordinary Fourier transform if applied twice in a row Ozaktas and Mendlovic [ “ Fourier transforms of fractional order and their optical implementation,” Opt Commun (to be published)] introduced the fractional Fourier transform into optics on the basis of the fact that a piece of graded-index (GRIN) fiber of proper length will perform a Fourier transform Cutting that piece of GRIN fiber into shorter pieces corresponds to splitting the ordinary Fourier transform into fractional transforms I approach the subject of fractional Fourier transforms in two other ways First, I point out the algorithmic isomorphism among image rotation, rotation of the Wigner distribution function, and fractional Fourier transforming Second, I propose two optical setups that are able to perform a fractional Fourier transform

965 citations

Journal ArticleDOI
TL;DR: In this paper, the linear transform kernel for fractional Fourier transform is derived and the spatial resolution and the space-bandwidth product for propagation in graded-index media are discussed.
Abstract: The linear transform kernel for fractional Fourier transforms is derived. The spatial resolution and the space–bandwidth product for propagation in graded-index media are discussed in direct relation to fractional Fourier transforms, and numerical examples are presented. It is shown how fractional Fourier transforms can be made the basis of generalized spatial filtering systems: Several filters are interleaved between several fractional transform stages, thereby increasing the number of degrees of freedom available in filter synthesis.

806 citations

Journal ArticleDOI
TL;DR: This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite-Gaussian functions, and is exactly unitary, index additive, and reduces to the D FT for unit order.
Abstract: We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite-Gaussian functions. The definition is exactly unitary, index additive, and reduces to the DFT for unit order. The fact that this definition satisfies all the desirable properties expected of the discrete fractional Fourier transform supports our confidence that it will be accepted as the definitive definition of this transform.

604 citations