scispace - formally typeset
Search or ask a question
Author

Victor V. Zhirnov

Bio: Victor V. Zhirnov is an academic researcher from Semiconductor Research Corporation. The author has contributed to research in topics: Diamond & Field electron emission. The author has an hindex of 36, co-authored 146 publications receiving 3951 citations. Previous affiliations of Victor V. Zhirnov include North Carolina State University & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
01 Nov 2003
TL;DR: This paper considers computational systems whose material realizations utilize electrons and energy barriers to represent and manipulate their binary representations of state.
Abstract: In this paper we consider device scaling and speed limitations on irreversible von Neumann computing that are derived from the requirement of "least energy computation." We consider computational systems whose material realizations utilize electrons and energy barriers to represent and manipulate their binary representations of state.

483 citations

Journal ArticleDOI
13 May 2012
TL;DR: It is argued that there are some short-term solutions involving more highly parallel manufacturing, increased design efficiency, and lower cost packaging technologies that could continue the steep learning curve for cost reductions that have historically been achieved via Moore's Law scaling.
Abstract: In this paper, the historical effects and benefits of Moore's law for semiconductor technologies are reviewed, and it is offered that the rapid learning curve obtained to the benefit of society by feature size scaling might be continued in several different ways. The problem is that as features approach the range of a few nanometers, electron-based devices depart radically from the ideal switch and, in fact, become very leaky in the off state. It is argued that there are some short-term solutions involving more highly parallel manufacturing, increased design efficiency, and lower cost packaging technologies that could continue the steep learning curve for cost reductions that have historically been achieved via Moore's Law scaling. Another alternative might be to increase chip functionality by integrating devices that offer broadened chip functionality including, e.g., sensors, energy sources, oscillators, etc. A third alternative would be to invent an entirely new information processing state variable based on different physics, using electron spin, magnetic dipoles, photons, etc., to improve the performance and reduce switching energy for devices whose smallest features are on the order of a few nanometers. Each of these alternatives is being actively explored and an overview of each strategy and progress to date is given in the paper. A final alternative offered in the paper is to learn from information processing examples in nature, specifically in living systems. An E.coli cell of about one cubic micrometer volume is shown to be an incredibly powerful and energy-efficient information processor relative to the performance of an end-of-scaling silicon processor of the same volume. The paper concludes by pointing out some of the crucial differences between E.coli information processing and conventional approaches with the hope technologies can be invented using the hints offered by biosystems.

255 citations

Journal ArticleDOI
TL;DR: Nucleic acid memory has a retention time far exceeding electronic memory, and as an alternative storage media, DNA surpasses the information density and energy of operation offered by flash memory.
Abstract: Nucleic acid memory has a retention time far exceeding electronic memory. As an alternative storage media, DNA surpasses the information density and energy of operation offered by flash memory.

210 citations

Journal ArticleDOI
TL;DR: In this paper, ultrananocrystalline diamond (UNCD) films 0.1-2.4 μm thick were conformally deposited on sharp single Si microtip emitters, using microwave CH4-Ar plasmaenhanced chemical vapor deposition in combination with a dielectrophoretic seeding process.
Abstract: Ultrananocrystalline diamond (UNCD) films 0.1–2.4 μm thick were conformally deposited on sharp single Si microtip emitters, using microwave CH4–Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60–100 μA/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In additio...

190 citations

Journal ArticleDOI
TL;DR: Can ferroelectric materials help transistors overcome the 'Boltzmann tyranny' that limits the performances of conventional semiconductor devices?
Abstract: Can ferroelectric materials help transistors overcome the 'Boltzmann tyranny' that limits the performances of conventional semiconductor devices?

187 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Abstract: Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.

4,547 citations

Journal ArticleDOI
TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Abstract: Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

3,037 citations

Journal ArticleDOI
TL;DR: By replacing the standard insulator with a ferroelectric insulator of the right thickness it should be possible to implement a step-up voltage transformer that will amplify the gate voltage thus leading to values of S lower than 60 mV/decade and enabling low voltage/low power operation.
Abstract: It is well-known that conventional field effect transistors (FETs) require a change in the channel potential of at least 60 mV at 300 K to effect a change in the current by a factor of 10, and this minimum subthreshold slope S puts a fundamental lower limit on the operating voltage and hence the power dissipation in standard FET-based switches. Here, we suggest that by replacing the standard insulator with a ferroelectric insulator of the right thickness it should be possible to implement a step-up voltage transformer that will amplify the gate voltage thus leading to values of S lower than 60 mV/decade and enabling low voltage/low power operation. The voltage transformer action can be understood intuitively as the result of an effective negative capacitance provided by the ferroelectric capacitor that arises from an internal positive feedback that in principle could be obtained from other microscopic mechanisms as well. Unlike other proposals to reduce S, this involves no change in the basic physics of the FET and thus does not affect its current drive or impose other restrictions.

1,722 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO3, and to be related to the self-doping capability of the early transition metal oxides.
Abstract: The great variability in the electrical properties of multinary oxide materials, ranging from insulating, through semiconducting to metallic behaviour, has given rise to the idea of modulating the electronic properties on a nanometre scale for high-density electronic memory devices. A particularly promising aspect seems to be the ability of perovskites to provide bistable switching of the conductance between non-metallic and metallic behaviour by the application of an appropriate electric field. Here we demonstrate that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO(3). The phenomenon is shown to originate from local modulations of the oxygen content and to be related to the self-doping capability of the early transition metal oxides. Our results show that extended defects, such as dislocations, can act as bistable nanowires and hold technological promise for terabit memory devices.

1,561 citations

Journal ArticleDOI
TL;DR: A complementary resistive switch is introduced that consists of two antiserial memristive elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption.
Abstract: On the road towards higher memory density and computer performance, a significant improvement in energy efficiency constitutes the dominant goal in future information technology. Passive crossbar arrays of memristive elements were suggested a decade ago as non-volatile random access memories (RAM) and can also be used for reconfigurable logic circuits. As such they represent an interesting alternative to the conventional von Neumann based computer chip architectures. Crossbar architectures hold the promise of a significant reduction in energy consumption because of their ultimate scaling potential and because they allow for a local fusion of logic and memory, thus avoiding energy consumption by data transfer on the chip. However, the expected paradigm change has not yet taken place because the general problem of selecting a designated cell within a passive crossbar array without interference from sneak-path currents through neighbouring cells has not yet been solved satisfactorily. Here we introduce a complementary resistive switch. It consists of two antiserial memristive elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption.

1,170 citations