scispace - formally typeset
Search or ask a question
Author

Victoria L. Hanson

Other affiliations: University of Georgia
Bio: Victoria L. Hanson is an academic researcher from University of Chicago. The author has contributed to research in topics: Biodiversity & Marine invertebrates. The author has an hindex of 1, co-authored 1 publications receiving 585 citations. Previous affiliations of Victoria L. Hanson include University of Georgia.

Papers
More filters
Journal ArticleDOI
04 Jul 2008-Science
TL;DR: In this paper, a new data set of fossil occurrences representing 3.5 million specimens was presented, and it was shown that global and local diversity was less than twice as high in the Neogene as in the mid-Paleozoic.
Abstract: It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.

650 citations


Cited by
More filters
Journal ArticleDOI
03 Mar 2011-Nature
TL;DR: Differences between fossil and modern data and the addition of recently available palaeontological information influence understanding of the current extinction crisis, and results confirm that current extinction rates are higher than would be expected from the fossil record.
Abstract: Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

3,051 citations

Journal ArticleDOI
02 Aug 2013-Science
TL;DR: This work highlights episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species’ relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions.
Abstract: Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species’ relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.

615 citations

Journal ArticleDOI
TL;DR: In the early Triassic period, Ammonoids and some other groups diversified rapidly, within 1-3 Myr, but extinctions continued through the Early Triassic, and a stable, complex ecosystem did not re-emerge until the beginning of the Middle Triassic 8-9 Myr after the crisis as discussed by the authors.
Abstract: The aftermath of the great end-Permian period mass extinction 252 Myr ago shows how life can recover from the loss of >90% species globally. The crisis was triggered by a number of physical environmental shocks (global warming, acid rain, ocean acidification and ocean anoxia), and some of these were repeated over the next 5-6 Myr. Ammonoids and some other groups diversified rapidly, within 1-3 Myr, but extinctions continued through the Early Triassic period. Triassic ecosystems were rebuilt stepwise from low to high trophic levels through the Early to Middle Triassic, and a stable, complex ecosystem did not re-emerge until the beginning of the Middle Triassic, 8-9 Myr after the crisis. A positive aspect of the recovery was the emergence of entirely new groups, such as marine reptiles and decapod crustaceans, as well as new tetrapods on land, including — eventually — dinosaurs. The stepwise recovery of life in the Triassic could have been delayed either by biotic drivers (complex multispecies interactions) or physical perturbations, or a combination of both. This is an example of the wider debate about the relative roles of intrinsic and extrinsic drivers of large-scale evolution. from a much more devastated planet and biota than the others. With only some 10% of species surviving, the EPME was much harsher than the other mass extinctions, during which global species diversity reduced to only about 50% of the pre-extinction total 1,2,24-26 . This means that the Triassic recovery has two profound implications: first, it may show qualitative, as well as quantitative, differences from the other post-extinction recoveries; and, second, it can act as an exemplar of what to expect, at its most extreme, when global biodiversity is pushed to the brink. There are obvious implications for current concerns about biodiversity loss and recovery resulting from human impacts 27,28 . In the past ten years, attention has focused on the sedimentary successions in south China. These are enormously laterally extensive, with some formations extending more than 2,000 km from the Zhejiang to Yunnan provinces. The huge exposures, length of the sections and improving dating open up the opportunity to explore physical environmental and biotic changes through the extinction and recovery times in varied marine habitats, and compare these with patterns elsewhere in the world (Fig. 1). A fine- scale, forensic analysis of this extraordinary time in Earth's history now becomes possible. The end-Permian mass extinction The EPME killed 80-96% of marine animal species and 70% of terrestrial vertebrate species

605 citations

Book
30 Sep 2011
TL;DR: In this article, a detailed analysis of the ichnology of a range of depositional environments is presented using examples from the Precambrian to the recent, and the use of trace fossils in facies analysis and sequence stratigraphy is discussed.
Abstract: Ichnology is the study of traces created in the substrate by living organisms. This is the first book to systematically cover basic concepts and applications in both paleobiology and sedimentology, bridging the gap between the two main facets of the field. It emphasizes the importance of understanding ecologic controls on benthic fauna distribution and the role of burrowing organisms in changing their environments. A detailed analysis of the ichnology of a range of depositional environments is presented using examples from the Precambrian to the recent, and the use of trace fossils in facies analysis and sequence stratigraphy is discussed. The potential for biogenic structures to provide valuable information and solve problems in a wide range of fields is also highlighted. An invaluable resource for researchers and graduate students in paleontology, sedimentology and sequence stratigraphy, this book will also be of interest to industry professionals working in petroleum geoscience.

605 citations

Journal ArticleDOI
TL;DR: It is suggested that the distributions of species within a region reveal more about the processes that generate diversity patterns than does the co‐occurrence of species at any given point.
Abstract: In this essay, I argue that the seemingly indestructible concept of the community as a local, interacting assemblage of species has hindered progress toward understanding species richness at local to regional scales. I suggest that the distributions of species within a region reveal more about the processes that generate diversity patterns than does the co‐occurrence of species at any given point. The local community is an epiphenomenon that has relatively little explanatory power in ecology and evolutionary biology. Local coexistence cannot provide insight into the ecogeographic distributions of species within a region, from which local assemblages of species derive, nor can local communities be used to test hypotheses concerning the origin, maintenance, and regulation of species richness, either locally or regionally. Ecologists are moving toward a community concept based on interactions between populations over a continuum of spatial and temporal scales within entire regions, including the po...

500 citations