scispace - formally typeset
Search or ask a question
Author

Victoria Langston

Bio: Victoria Langston is an academic researcher. The author has contributed to research in topics: Deep learning & Generative model. The author has an hindex of 4, co-authored 5 publications receiving 1780 citations.

Papers
More filters
Posted Content
TL;DR: It is argued that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective.
Abstract: Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

2,170 citations

Posted Content
TL;DR: This work introduces an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning.
Abstract: We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

200 citations

Proceedings Article
27 Sep 2018
TL;DR: The main contribution of this work is to introduce techniques for representing and reasoning about states in model-free deep reinforcement learning agents via relational inductive biases, which can offer advantages in efficiency, generalization, and interpretability.
Abstract: We introduce an approach for augmenting model-free deep reinforcement learning agents with a mechanism for relational reasoning over structured representations, which improves performance, learning efficiency, generalization, and interpretability. Our architecture encodes an image as a set of vectors, and applies an iterative message-passing procedure to discover and reason about relevant entities and relations in a scene. In six of seven StarCraft II Learning Environment mini-games, our agent achieved state-of-the-art performance, and surpassed human grandmasterlevel on four. In a novel navigation and planning task, our agent’s performance and learning efficiency far exceeded non-relational baselines, it was able to generalize to more complex scenes than it had experienced during training. Moreover, when we examined its learned internal representations, they reflected important structure about the problem and the agent’s intentions. The main contribution of this work is to introduce techniques for representing and reasoning about states in model-free deep reinforcement learning agents via relational inductive biases. Our experiments show this approach can offer advantages in efficiency, generalization, and interpretability, and can scale up to meet some of the most challenging test environments in modern artificial intelligence.

152 citations

Posted Content
TL;DR: This work model neural responses to faces in the macaque inferotemporal cortex with a deep self-supervised generative model, β-VAE, which disentangles sensory data into interpretable latent factors, such as gender or age, and results imply that optimising the disentangling objective leads to representations that closely resemble those in the IT at the single unit level.
Abstract: Deep supervised neural networks trained to classify objects have emerged as popular models of computation in the primate ventral stream These models represent information with a high-dimensional distributed population code, implying that inferotemporal (IT) responses are also too complex to interpret at the single-neuron level We challenge this view by modelling neural responses to faces in the macaque IT with a deep unsupervised generative model, beta-VAE Unlike deep classifiers, beta-VAE "disentangles" sensory data into interpretable latent factors, such as gender or hair length We found a remarkable correspondence between the generative factors discovered by the model and those coded by single IT neurons Moreover, we were able to reconstruct face images using the signals from just a handful of cells This suggests that the ventral visual stream may be optimising the disentangling objective, producing a neural code that is low-dimensional and semantically interpretable at the single-unit level

51 citations

Journal ArticleDOI
TL;DR: In this paper, a deep self-supervised generative model, β-VAE, was proposed to disentangle faces into semantically meaningful factors, such as age or the presence of a smile, at the single neuron level.
Abstract: In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE, which disentangles sensory data into interpretable latent factors, such as gender or age. Our results demonstrate a strong correspondence between the generative factors discovered by β-VAE and those coded by single IT neurons, beyond that found for the baselines, including the handcrafted state-of-the-art model of face perception, the Active Appearance Model, and deep classifiers. Moreover, β-VAE is able to reconstruct novel face images using signals from just a handful of cells. Together our results imply that optimising the disentangling objective leads to representations that closely resemble those in the IT at the single unit level. This points at disentangling as a plausible learning objective for the visual brain. Little is known about the brain’s computations that enable the recognition of faces. Here, the authors use unsupervised deep learning to show that the brain disentangles faces into semantically meaningful factors, like age or the presence of a smile, at the single neuron level.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations

Journal ArticleDOI
30 Oct 2019-Nature
TL;DR: The agent, AlphaStar, is evaluated, which uses a multi-agent reinforcement learning algorithm and has reached Grandmaster level, ranking among the top 0.2% of human players for the real-time strategy game StarCraft II.
Abstract: Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and its relevance to the real world in terms of its raw complexity and multi-agent challenges. Over the course of a decade and numerous competitions1-3, the strongest agents have simplified important aspects of the game, utilized superhuman capabilities, or employed hand-crafted sub-systems4. Despite these advantages, no previous agent has come close to matching the overall skill of top StarCraft players. We chose to address the challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex domains: a multi-agent reinforcement learning algorithm that uses data from both human and agent games within a diverse league of continually adapting strategies and counter-strategies, each represented by deep neural networks5,6. We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of online games against human players. AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players.

2,595 citations

Posted Content
TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Abstract: Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics systems, learning molecular fingerprints, predicting protein interface, and classifying diseases demand a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures (like the dependency trees of sentences and the scene graphs of images) is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN), graph attention network (GAT), graph recurrent network (GRN) have demonstrated ground-breaking performances on many deep learning tasks. In this survey, we propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.

2,494 citations

Posted Content
TL;DR: PyTorch Geometric is introduced, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch, and a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios is performed.
Abstract: We introduce PyTorch Geometric, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch. In addition to general graph data structures and processing methods, it contains a variety of recently published methods from the domains of relational learning and 3D data processing. PyTorch Geometric achieves high data throughput by leveraging sparse GPU acceleration, by providing dedicated CUDA kernels and by introducing efficient mini-batch handling for input examples of different size. In this work, we present the library in detail and perform a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios.

2,308 citations

Posted Content
TL;DR: It is argued that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective.
Abstract: Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

2,170 citations