scispace - formally typeset
Search or ask a question
Author

Victoria M. McLeod

Bio: Victoria M. McLeod is an academic researcher from Monash University. The author has contributed to research in topics: Lymphatic system & Drug delivery. The author has an hindex of 16, co-authored 29 publications receiving 1236 citations. Previous affiliations of Victoria M. McLeod include Florey Institute of Neuroscience and Mental Health & Monash Institute of Medical Research.

Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that PEGylated dendrimers have potential as inhalable drug delivery systems to promote the prolonged exposure of lung-resident cancers to chemotherapeutic drugs and to improve anti-cancer activity.

153 citations

Journal ArticleDOI
TL;DR: In this paper, the pharmacokinetics, biodistribution, and antitumor efficacy of three doxorubicin formulations were investigated in Walker 256 tumor-bearing rats.

151 citations

Journal ArticleDOI
TL;DR: The data suggest that PEGylated poly-L-lysine dendrimers are well absorbed from SC injection sites and that the extent of lymphatic transport may be enhanced by increasing the size of the P EGylated d endrimer complex.

137 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces has been investigated, and the results of this study further illustrate the potential utility of biodegradable PEG-ylated poly-l-lysine Dendrimers as long-circulating vectors for the delivery and tumor-targeting of hyphobic drugs.
Abstract: Dendrimers have potential for delivering chemotherapeutic drugs to solid tumors via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterized the effect on dendrimer disposition of conjugating alpha-carboxyl protected methotrexate (MTX) to a series of PEGylated (3)H-labeled poly-l-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG(570) dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG(1100) dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumors, and comparative disposition data in both rats (1 to 2% dose/g in tumor) and mice (11% dose/g in tumor) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-l-lysine dendrimers as long-circulating vectors for the delivery and tumor-targeting of hydrophobic drugs.

126 citations

Journal ArticleDOI
TL;DR: Recommendations are proposed as to the suggested approach to develop dendrimers as tumor targeted drug-delivery vectors as a systematic review toward which drug association approach will provide the best outcomes in terms of antitumor efficacy and systemic toxicity.
Abstract: Cancer is a leading cause of death within developed nations, and part of this morbidity is due to difficulties associated with its treatment. Currently, anticancer therapy relies heavily upon the administration of small molecule cytotoxic drugs that attack both cancerous and noncancerous cells due to limited selectivity of the drugs and widespread distribution of the cytotoxic molecules throughout the body. The antitumor efficacy and systemic toxicity of existing chemotherapeutic drugs can, however, be improved by employing formulation and particle engineering approaches. Thus, drug delivery systems can be developed that more specifically target tumor tissue using both passive (such as the enhanced permeation and retention effect) and active (through the use of cancer targeting ligands) modalities. Dendrimers are one such system that can be developed with high structural monodispersity, long plasma circulation times and precise control over surface structure and biodistribution properties. Chemotherapeutic drugs can be associated with dendrimers via covalent conjugation to the surface, or via encapsulation of drugs within the structure. Each of these approaches has demonstrated therapeutic benefit relative to the administration of free drug. Thus far, however, there has not been a systematic review toward which drug association approach will provide the best outcomes in terms of antitumor efficacy and systemic toxicity. Hence, the current literature is reviewed here and recommendations are proposed as to the suggested approach to develop dendrimers as tumor targeted drug-delivery vectors.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development and performs as well or better than current methods.
Abstract: Drug development has a high attrition rate, with poor pharmacokinetic and safety properties a significant hurdle. Computational approaches may help minimize these risks. We have developed a novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development. pkCSM performs as well or better than current methods. A freely accessible web server (http://structure.bioc.cam.ac.uk/pkcsm), which retains no information submitted to it, provides an integrated platform to rapidly evaluate pharmacokinetic and toxicity properties.

1,866 citations

Journal ArticleDOI
TL;DR: In this critical review, insights are provided into the design and development of targeted polymeric NPs and the challenges associated with the engineering of this novel class of therapeutics are highlighted, including considerations of NP design optimization, development and biophysicochemical properties.
Abstract: Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).

1,407 citations

Journal ArticleDOI
TL;DR: Recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases are highlighted.
Abstract: The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.

1,186 citations

Journal ArticleDOI
TL;DR: By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level.
Abstract: Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the act...

782 citations