scispace - formally typeset
Search or ask a question
Author

Victoria Nuzzo

Bio: Victoria Nuzzo is an academic researcher. The author has contributed to research in topics: Alliaria petiolata & Introduced species. The author has an hindex of 17, co-authored 27 publications receiving 1620 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A marked decline in its phytotoxin production and a consequent decline in their impact on three native species, across a 50+ year chronosequence of Alliaria petiolata invasion is documented.
Abstract: Invasive species can quickly transform biological communities due to their high abundance and strong impacts on native species, in part because they can be released from the ecological forces that limit native populations. However, little is known about the long-term dynamics of invasions; do invaders maintain their dominant status over long time spans, or do new ecological and evolutionary forces eventually develop to limit their populations? Alliaria petiolata is a Eurasian species that aggressively invades North American forest understories, in part due to the production of toxic phytochemicals. Here we document a marked decline in its phytotoxin production and a consequent decline in their impact on three native species, across a 50+ year chronosequence of Alliaria petiolata invasion. Genetic evidence suggests that these patterns result from natural selection for decreased phytotoxin production rather than founder effects during introduction and spread. These patterns are consistent with the finding of slowing A. petiolata population growth and rebounding native species abundance across a separate chronosequence in Illinois, U.S. These results suggest that this invader is developing evolutionary limits in its introduced range and highlight the importance of understanding the long-term processes that shape species invasions and their impacts.

226 citations

Journal ArticleDOI
Helen Phillips1, Carlos A. Guerra2, Marie Luise Carolina Bartz3, Maria J. I. Briones4, George G. Brown5, Thomas W. Crowther6, Olga Ferlian1, Konstantin B. Gongalsky7, Johan van den Hoogen6, Julia Krebs1, Alberto Orgiazzi, Devin Routh6, Benjamin Schwarz8, Elizabeth M. Bach, Joanne M. Bennett2, Ulrich Brose9, Thibaud Decaëns, Birgitta König-Ries9, Michel Loreau, Jérôme Mathieu, Christian Mulder10, Wim H. van der Putten11, Kelly S. Ramirez, Matthias C. Rillig12, David J. Russell13, Michiel Rutgers, Madhav P. Thakur, Franciska T. de Vries, Diana H. Wall14, David A. Wardle, Miwa Arai15, Fredrick O. Ayuke16, Geoff H. Baker17, Robin Beauséjour, José Camilo Bedano18, Klaus Birkhofer19, Eric Blanchart, Bernd Blossey20, Thomas Bolger21, Robert L. Bradley, Mac A. Callaham22, Yvan Capowiez, Mark E. Caulfield11, Amy Choi23, Felicity Crotty24, Andrea Dávalos20, Andrea Dávalos25, Darío J. Díaz Cosín, Anahí Domínguez18, Andrés Esteban Duhour26, Nick van Eekeren, Christoph Emmerling27, Liliana B. Falco26, Rosa Fernández, Steven J. Fonte14, Carlos Fragoso, André L.C. Franco, Martine Fugère, Abegail T Fusilero28, Shaieste Gholami29, Michael J. Gundale, Mónica Gutiérrez López, Davorka K. Hackenberger30, Luis M. Hernández, Takuo Hishi31, Andrew R. Holdsworth32, Martin Holmstrup33, Kristine N. Hopfensperger34, Esperanza Huerta Lwanga11, Veikko Huhta, Tunsisa T. Hurisso35, Tunsisa T. Hurisso14, Basil V. Iannone, Madalina Iordache36, Monika Joschko, Nobuhiro Kaneko37, Radoslava Kanianska38, Aidan M. Keith39, Courtland Kelly14, Maria Kernecker, Jonatan Klaminder, Armand W. Koné40, Yahya Kooch41, Sanna T. Kukkonen, H. Lalthanzara42, Daniel R. Lammel12, Daniel R. Lammel43, Iurii M. Lebedev7, Yiqing Li44, Juan B. Jesús Lidón, Noa Kekuewa Lincoln45, Scott R. Loss46, Raphaël Marichal, Radim Matula, Jan Hendrik Moos47, Gerardo Moreno48, Alejandro Morón-Ríos, Bart Muys49, Johan Neirynck50, Lindsey Norgrove, Marta Novo, Visa Nuutinen51, Victoria Nuzzo, Mujeeb Rahman P, Johan Pansu17, Shishir Paudel46, Guénola Pérès, Lorenzo Pérez-Camacho52, Raúl Piñeiro, Jean-François Ponge, Muhammad Rashid53, Muhammad Rashid54, Salvador Rebollo52, Javier Rodeiro-Iglesias4, Miguel Á. Rodríguez52, Alexander M. Roth55, Guillaume Xavier Rousseau56, Anna Rożen57, Ehsan Sayad29, Loes van Schaik58, Bryant C. Scharenbroch59, Michael Schirrmann60, Olaf Schmidt21, Boris Schröder61, Julia Seeber62, Maxim Shashkov63, Maxim Shashkov64, Jaswinder Singh65, Sandy M. Smith23, Michael Steinwandter, José Antonio Talavera66, Dolores Trigo, Jiro Tsukamoto67, Anne W. de Valença, Steven J. Vanek14, Iñigo Virto68, Adrian A. Wackett55, Matthew W. Warren, Nathaniel H. Wehr, Joann K. Whalen69, Michael B. Wironen70, Volkmar Wolters71, Irina V. Zenkova, Weixin Zhang72, Erin K. Cameron73, Nico Eisenhauer1 
Leipzig University1, Martin Luther University of Halle-Wittenberg2, Universidade Positivo3, University of Vigo4, Empresa Brasileira de Pesquisa Agropecuária5, ETH Zurich6, Moscow State University7, University of Freiburg8, University of Jena9, University of Catania10, Wageningen University and Research Centre11, Free University of Berlin12, Senckenberg Museum13, Colorado State University14, National Agriculture and Food Research Organization15, University of Nairobi16, Commonwealth Scientific and Industrial Research Organisation17, National Scientific and Technical Research Council18, Brandenburg University of Technology19, Cornell University20, University College Dublin21, United States Forest Service22, University of Toronto23, Aberystwyth University24, State University of New York at Cortland25, National University of Luján26, University of Trier27, University of the Philippines Mindanao28, Razi University29, Josip Juraj Strossmayer University of Osijek30, Kyushu University31, Minnesota Pollution Control Agency32, Aarhus University33, Northern Kentucky University34, Lincoln University (Missouri)35, University of Agricultural Sciences, Dharwad36, Fukushima University37, Matej Bel University38, Lancaster University39, Université d'Abobo-Adjamé40, Tarbiat Modares University41, Pachhunga University College42, University of São Paulo43, University of Hawaii at Hilo44, College of Tropical Agriculture and Human Resources45, Oklahoma State University–Stillwater46, Forest Research Institute47, University of Extremadura48, Katholieke Universiteit Leuven49, Research Institute for Nature and Forest50, Natural Resources Institute Finland51, University of Alcalá52, King Abdulaziz University53, COMSATS Institute of Information Technology54, University of Minnesota55, Federal University of Maranhão56, Jagiellonian University57, Technical University of Berlin58, University of Wisconsin-Madison59, Leibniz Association60, Braunschweig University of Technology61, University of Innsbruck62, Russian Academy of Sciences63, Keldysh Institute of Applied Mathematics64, Khalsa College, Amritsar65, University of La Laguna66, Kōchi University67, Universidad Pública de Navarra68, McGill University69, The Nature Conservancy70, University of Giessen71, Henan University72, University of Saint Mary73
25 Oct 2019-Science
TL;DR: It was found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms, which suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
Abstract: Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.

223 citations

Journal Article
TL;DR: In this article, a 50+ year chronosequence of Alliaria petiolata invasion was studied and the authors found that a marked decline in its phytotoxin production and a consequent decline in their impact on three native species, across a 50 + year timeline of invasion.
Abstract: Invasive species can quickly transform biological communities due to their high abundance and strong impacts on native species, in part because they can be released from the ecological forces that limit native populations. However, little is known about the long-term dynamics of invasions; do invaders maintain their dominant status over long time spans, or do new ecological and evolutionary forces eventually develop to limit their populations? Alliaria petiolata is a Eurasian species that aggressively invades North American forest understories, in part due to the production of toxic phytochemicals. Here we document a marked decline in its phytotoxin production and a consequent decline in their impact on three native species, across a 50+ year chronosequence of Alliaria petiolata invasion. Genetic evidence suggests that these patterns result from natural selection for decreased phytotoxin production rather than founder effects during introduction and spread. These patterns are consistent with the finding of slowing A. petiolata population growth and rebounding native species abundance across a separate chronosequence in Illinois, U.S. These results suggest that this invader is developing evolutionary limits in its introduced range and highlight the importance of understanding the long-term processes that shape species invasions and their impacts.

196 citations

Journal ArticleDOI
TL;DR: Patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests.
Abstract: Identification of factors that drive changes in plant community structure and contribute to decline and endangerment of native plant species is essential to the development of appropriate management strategies. Introduced species are assumed to be driving causes of shifts in native plant communities, but unequivocal evidence supporting this view is frequently lacking. We measured native vegetation, non-native earthworm biomass, and leaf-litter volume in 15 forests in the presence and absence of 3 non-native plant species (Microstegium vimineum, Alliaria petiolata, Berberis thunbergii) to assess the general impact of non-native plant and earthworm invasions on native plant communities in northeastern United States. Non-native plant cover was positively correlated with total native plant cover and non-native earthworm biomass. Earthworm biomass was negatively associated with cover of native woody and most herbaceous plants and with litter volume. Graminoid cover was positively associated with non-native earthworm biomass and non-native plant cover. These earthworm-associated responses were detected at all sites despite differences in earthworm species and abundance, composition of the native plant community, identity of invasive plant species, and geographic region. These patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests. Thus, a focus on management of invasive plant species may be insufficient to protect northeastern forest understory species.

191 citations

Journal ArticleDOI
TL;DR: Results indicate that after garlic mustard invades a forest it becomes a permanent part of the community, annually increasing in presence but fluctuating in cover and density, and may underestimate the rate of spread in low quality highly disturbed forests.
Abstract: The invasion of non-indigenous plant species poses a severe threat to native plant communities. Garlic mustard (Alliaria petiolata) is a naturalized European biennial herb that has spread rapidly through the eastern US and adjacent Canada. To determine garlic mustard rate of spread, eleven permanent plots (50×25 m) were located in seven high quality (relatively undisturbed) forests in the early stages of invasion. Garlic mustard presence was recorded within six 50×2 m permanent belt transects, and density and percent cover by age class were recorded in 36 permanent 1 m2 quadrats, between 1989 and 1992, and again in 1997. Garlic mustard spread at an average rate of 5.4 m per year between 1989 and 1992, in all plots combined. Within individual plots rate of spread varied substantially, with location of the front increasing up to 36 m and decreasing as much as 18 m between years. While the front alternately advanced and retreated, over time garlic mustard consistently advanced through all forests. Rate of spread was influenced by establishment of satellite populations, and disturbance (wind-throw and flooding). The pattern of spread within plots was one of a ragged advancing front, supplemented by establishment of satellite populations 6–40 m distant from the front, which then coalesced with the main population. Garlic mustard presence between 1989 and 1997 increased significantly within all plots, and in each age class within each plot. The greatest increases occurred in plots where this plant was initially rarest. Garlic mustard cover and density varied nonsignificantly during the same time period. These results indicate that after garlic mustard invades a forest it becomes a permanent part of the community, annually increasing in presence but fluctuating in cover and density. Garlic mustard maintains a low profile under low disturbance conditions, but increases rapidly with periodic disturbance. This study monitored garlic mustard invasion in high quality relatively undisturbed forests, and may underestimate the rate of spread in low quality highly disturbed forests.

144 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2014-Nature
TL;DR: Recent progress in understanding belowground biodiversity and its role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change are reviewed.
Abstract: Evidence is mounting that the immense diversity of microorganisms and animals that live belowground contributes significantly to shaping aboveground biodiversity and the functioning of terrestrial ecosystems. Our understanding of how this belowground biodiversity is distributed, and how it regulates the structure and functioning of terrestrial ecosystems, is rapidly growing. Evidence also points to soil biodiversity as having a key role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change. Here we review recent progress and propose avenues for further research in this field.

2,074 citations

Journal ArticleDOI
TL;DR: In this paper, a plant-soil feedback model is proposed to explain succession, invasion, response to climate warming and diversity-productivity relationships in terrestrial ecosystems, and how terrestrial ecosystems respond to global land use and climate change.
Abstract: Summary Plant–soil feedbacks is becoming an important concept for explaining vegetation dynamics, the invasiveness of introduced exotic species in new habitats and how terrestrial ecosystems respond to global land use and climate change. Using a new conceptual model, we show how critical alterations in plant–soil feedback interactions can change the assemblage of plant communities. We highlight recent advances, define terms and identify future challenges in this area of research and discuss how variations in strengths and directions of plant–soil feedbacks can explain succession, invasion, response to climate warming and diversity-productivity relationships. While there has been a rapid increase in understanding the biological, chemical and physical mechanisms and their interdependencies underlying plant–soil feedback interactions, further progress is to be expected from applying new experimental techniques and technologies, linking empirical studies to modelling and field-based studies that can include plant–soil feedback interactions on longer time scales that also include long-term processes such as litter decomposition and mineralization. Significant progress has also been made in analysing consequences of plant–soil feedbacks for biodiversity-functioning relationships, plant fitness and selection. To further integrate plant–soil feedbacks into ecological theory, it will be important to determine where and how observed patterns may be generalized, and how they may influence evolution. Synthesis. Gaining a greater understanding of plant–soil feedbacks and underlying mechanisms is improving our ability to predict consequences of these interactions for plant community composition and productivity under a variety of conditions. Future research will enable better prediction and mitigation of the consequences of human-induced global changes, improve efforts of restoration and conservation and promote sustainable provision of ecosystem services in a rapidly changing world.

1,115 citations

01 Jan 2013
TL;DR: In this article, a plant-soil feedback model has been proposed to explain succession, invasion, response to climate warming and diversity-productivity relationships in terrestrial ecosystems, and to predict consequences of these interactions under a variety of conditions.
Abstract: Summary 1. Plant–soil feedbacks is becoming an important concept for explaining vegetation dynamics, the invasiveness of introduced exotic species in new habitats and how terrestrial ecosystems respond to global land use and climate change. Using a new conceptual model, we show how critical alterations in plant–soil feedback interactions can change the assemblage of plant communities. We highlight recent advances, define terms and identify future challenges in this area of research and discuss how variations in strengths and directions of plant–soil feedbacks can explain succession, invasion, response to climate warming and diversity-productivity relationships. 2. While there has been a rapid increase in understanding the biological, chemical and physical mechanisms and their interdependencies underlying plant–soil feedback interactions, further progress is to be expected from applying new experimental techniques and technologies, linking empirical studies to modelling and field-based studies that can include plant–soil feedback interactions on longer time scales that also include long-term processes such as litter decomposition and mineralization. 3. Significant progress has also been made in analysing consequences of plant–soil feedbacks for biodiversity-functioning relationships, plant fitness and selection. 4. To further integrate plant–soil feedbacks into ecological theory, it will be important to determine where and how observed patterns may be generalized, and how they may influence evolution. 5. Synthesis. Gaining a greater understanding of plant–soil feedbacks and underlying mechanisms is improving our ability to predict consequences of these interactions for plant community composition and productivity under a variety of conditions. Future research will enable better prediction and mitigation of the consequences of human-induced global changes, improve efforts of restoration and conservation and promote sustainable provision of ecosystem services in a rapidly changing world.

1,018 citations

01 Jan 2011
TL;DR: The GMTED2010 layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arcsecond SRTM.
Abstract: For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. 10. Diagram showing the GMTED2010 layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arc-second SRTM

802 citations

Journal ArticleDOI
TL;DR: Novel evidence is presented that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi.
Abstract: The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.

775 citations