scispace - formally typeset
Search or ask a question
Author

Vikas Saxena

Bio: Vikas Saxena is an academic researcher from University of Maryland, Baltimore. The author has contributed to research in topics: Medicine & Immune system. The author has an hindex of 10, co-authored 23 publications receiving 311 citations. Previous affiliations of Vikas Saxena include Academia Sinica & Ohio State University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex.
Abstract: The hepatitis C virus (HCV) RNA replicates in hepatic cells by forming a replication complex on the lipid raft (detergent-resistant membrane [DRM]). Replication complex formation requires various viral nonstructural (NS) proteins as well as host cellular proteins. In our previous study (C. K. Lai, K. S. Jeng, K. Machida, and M. M. Lai, J. Virol. 82:8838-8848, 2008), we found that a cellular protein, annexin A2 (Anxa2), interacts with NS3/NS4A. Since NS3/NS4A is a membranous protein and Anxa2 is known as a lipid raft-associated scaffold protein, we postulate that Anxa2 helps in the formation of the HCV replication complex on the lipid raft. Further studies showed that Anxa2 was localized at the HCV-induced membranous web and interacted with NS4B, NS5A, and NS5B and colocalized with them in the perinuclear region. The silencing of Anxa2 decreased the formation of membranous web-like structures and viral RNA replication. Subcellular fractionation and bimolecular fluorescence complementation analysis revealed that Anxa2 was partially associated with HCV at the lipid raft enriched with phosphatidylinositol-4-phosphate (PI4P) and caveolin-2. Further, the overexpression of Anxa2 in HCV-nonsusceptible HEK293 cells caused the enrichment of HCV NS proteins in the DRM fraction and increased the colony-forming ability of the HCV replicon. Since Anxa2 is known to induce the formation of the lipid raft microdomain, we propose that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex.

70 citations

Journal ArticleDOI
01 Mar 2017-Methods
TL;DR: A detailed overview on affinity chromatography and the components involved in purification is provided to provide a detailed overview of antibody purification methodologies and their underlying working principles.

64 citations

Journal ArticleDOI
TL;DR: Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans results in a lower lamination ratio, supportive of inflammation.
Abstract: We hypothesized that the gut microbiota influences survival of murine cardiac allografts through modulation of immunity. Antibiotic pretreated mice received vascularized cardiac allografts and fecal microbiota transfer (FMT), along with tacrolimus immunosuppression. FMT source samples were from normal, pregnant (immune suppressed), or spontaneously colitic (inflammation) mice. Bifidobacterium pseudolongum (B. pseudolongum) in pregnant FMT recipients was associated with prolonged allograft survival and lower inflammation and fibrosis, while normal or colitic FMT resulted in inferior survival and worse histology. Transfer of B. pseudolongum alone resulted in reduced inflammation and fibrosis. Stimulation of DC and macrophage lines with B. pseudolongum induced the antiinflammatory cytokine IL-10 and homeostatic chemokine CCL19 but induced lesser amounts of the proinflammatory cytokines TNFα and IL-6. In contrast, LPS and Desulfovibrio desulfuricans (D. desulfuricans), more abundant in colitic FMT, induced a more inflammatory cytokine response. Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans resulted in a lower laminin α4/α5 ratio, supportive of inflammation. Discrete gut bacterial species alter immunity and may predict graft outcomes through stimulation of myeloid cells and shifts in lymph node structure and permissiveness.

50 citations

Journal ArticleDOI
TL;DR: It is shown that in T cells transitioning to memory, the expression of high levels of Eomes is not constitutive but rather requires a continuum of cell-intrinsic NFκB signaling, which regulates Eomes levels to maintain memory fitness.
Abstract: T-cell memory is critical for long-term immunity. However, the factors involved in maintaining the persistence, function, and phenotype of the memory pool are undefined. Eomesodermin (Eomes) is required for the establishment of the memory pool. Here, we show that in T cells transitioning to memory, the expression of high levels of Eomes is not constitutive but rather requires a continuum of cell-intrinsic NFκB signaling. Failure to maintain NFκB signals after the peak of the response led to impaired Eomes expression and a defect in the maintenance of CD8 T-cell memory. Strikingly, we found that antigen receptor [T-cell receptor (TCR)] signaling regulates this process through expression of the NFκB-dependent kinase proviral integration site for Moloney murine leukemia virus-1 (PIM-1), which in turn regulates NFκB and Eomes. T cells defective in TCR-dependent NFκB signaling were impaired in late expression of Pim-1, Eomes, and CD8 memory. These defects were rescued when TCR-dependent NFκB signaling was restored. We also found that NFκB-Pim-1 signals were required at memory to maintain memory CD8 T-cell longevity, effector function, and Eomes expression. Hence, an NFκB-Pim-1-Eomes axis regulates Eomes levels to maintain memory fitness.

47 citations

Journal ArticleDOI
TL;DR: Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.
Abstract: Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.

35 citations


Cited by
More filters
Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

01 Jan 2011
TL;DR: In this paper, the authors colonized GF mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota.
Abstract: Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4(+) and CD8(+) T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression--all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system.

768 citations

Journal ArticleDOI
TL;DR: This Review focuses on the key regulatory steps during viral infection in which autophagy is involved and discusses the specific molecular mechanisms that diverse viruses use to repurposeautophagy for their life cycle and pathogenesis.
Abstract: Autophagy is a powerful tool that host cells use to defend against viral infection. Double-membrane vesicles, termed autophagosomes, deliver trapped viral cargo to the lysosome for degradation. Specifically, autophagy initiates an innate immune response by cooperating with pattern recognition receptor signalling to induce interferon production. It also selectively degrades immune components associated with viral particles. Following degradation, autophagy coordinates adaptive immunity by delivering virus-derived antigens for presentation to T lymphocytes. However, in an ongoing evolutionary arms race, viruses have acquired the potent ability to hijack and subvert autophagy for their benefit. In this Review, we focus on the key regulatory steps during viral infection in which autophagy is involved and discuss the specific molecular mechanisms that diverse viruses use to repurpose autophagy for their life cycle and pathogenesis.

463 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that HCV-RNA-containing exosomes from infected cells to nonpermissive plasmacytoid dendritic cells (pDCs) are sufficient to activate pDCs.

423 citations

Journal ArticleDOI
TL;DR: Evidence indicates that HCV infection does not elicit protective immunity against reinfection with homologous or heterologous strains, which raises concerns for the development of effective vaccines against HCV.
Abstract: Some individuals infected with hepatitis C virus (HCV) experience multiple episodes of acute hepatitis. It is unclear whether these episodes are due to reinfection with HCV or to reactivation of the original virus infection. Markers of viral replication and host immunity were studied in five chimpanzees sequentially inoculated over a period of 3 years with different HCV strains of proven infectivity. Each rechallenge of a convalescent chimpanzee with the same or a different HCV strain resulted in the reappearance of viremia, which was due to infection with the subsequent challenge virus. The evidence indicates that HCV infection does not elicit protective immunity against reinfection with homologous or heterologous strains, which raises concerns for the development of effective vaccines against HCV.

343 citations