scispace - formally typeset
Search or ask a question
Author

Vikash Sehwag

Bio: Vikash Sehwag is an academic researcher from Princeton University. The author has contributed to research in topics: Robustness (computer science) & Computer science. The author has an hindex of 9, co-authored 26 publications receiving 285 citations. Previous affiliations of Vikash Sehwag include Indian Institute of Technology Kharagpur.

Papers
More filters
Posted Content
TL;DR: This work evaluates robustness of models for their benchmark with AutoAttack, an ensemble of white- and black-box attacks which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications.
Abstract: As a research community, we are still lacking a systematic understanding of the progress on adversarial robustness, which often makes it hard to identify the most promising ideas in training robust models. A key challenge in benchmarking robustness is that its evaluation is often error-prone, leading to overestimation of the true robustness of models. While adaptive attacks designed for a particular defense are a potential solution, they have to be highly customized for particular models, which makes it difficult to compare different methods. Our goal is to instead establish a standardized benchmark of adversarial robustness, which as accurately as possible reflects the robustness of the considered models within a reasonable computational budget. To evaluate the robustness of models for our benchmark, we consider AutoAttack, an ensemble of white- and black-box attacks which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications. We also impose some restrictions on the admitted models to rule out defenses that only make gradient-based attacks ineffective without improving actual robustness. Our leaderboard, hosted at this https URL, contains evaluations of 90+ models and aims at reflecting the current state of the art on a set of well-defined tasks in $\ell_\infty$- and $\ell_2$-threat models and on common corruptions, with possible extensions in the future. Additionally, we open-source the library this https URL that provides unified access to 60+ robust models to facilitate their downstream applications. Finally, based on the collected models, we analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.

257 citations

Journal ArticleDOI
TL;DR: In this article , the authors show that diffusion models memorize individual images from their training data and emit them at generation time, and that mitigating these vulnerabilities may require new advances in privacy-preserving training.
Abstract: Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted significant attention due to their ability to generate high-quality synthetic images. In this work, we show that diffusion models memorize individual images from their training data and emit them at generation time. With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models, ranging from photographs of individual people to trademarked company logos. We also train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy. Overall, our results show that diffusion models are much less private than prior generative models such as GANs, and that mitigating these vulnerabilities may require new advances in privacy-preserving training.

94 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a fast-convergent federated learning algorithm, called ''mathsf {FOLB}$'', which performs intelligent sampling of devices in each round of model training to optimize the expected convergence speed.
Abstract: Federated learning has emerged recently as a promising solution for distributing machine learning tasks through modern networks of mobile devices. Recent studies have obtained lower bounds on the expected decrease in model loss that is achieved through each round of federated learning. However, convergence generally requires a large number of communication rounds, which induces delay in model training and is costly in terms of network resources. In this paper, we propose a fast-convergent federated learning algorithm, called $\mathsf {FOLB}$ , which performs intelligent sampling of devices in each round of model training to optimize the expected convergence speed. We first theoretically characterize a lower bound on improvement that can be obtained in each round if devices are selected according to the expected improvement their local models will provide to the current global model. Then, we show that $\mathsf {FOLB}$ obtains this bound through uniform sampling by weighting device updates according to their gradient information. $\mathsf {FOLB}$ is able to handle both communication and computation heterogeneity of devices by adapting the aggregations according to estimates of device’s capabilities of contributing to the updates. We evaluate $\mathsf {FOLB}$ in comparison with existing federated learning algorithms and experimentally show its improvement in trained model accuracy, convergence speed, and/or model stability across various machine learning tasks and datasets.

85 citations

Posted Content
TL;DR: This work proposes to make pruning techniques aware of the robust training objective and let the training objective guide the search for which connections to prune, and demonstrates the success of this approach across CIFAR-10, SVHN, and ImageNet dataset with four robust training techniques.
Abstract: In safety-critical but computationally resource-constrained applications, deep learning faces two key challenges: lack of robustness against adversarial attacks and large neural network size (often millions of parameters). While the research community has extensively explored the use of robust training and network pruning independently to address one of these challenges, only a few recent works have studied them jointly. However, these works inherit a heuristic pruning strategy that was developed for benign training, which performs poorly when integrated with robust training techniques, including adversarial training and verifiable robust training. To overcome this challenge, we propose to make pruning techniques aware of the robust training objective and let the training objective guide the search for which connections to prune. We realize this insight by formulating the pruning objective as an empirical risk minimization problem which is solved efficiently using SGD. We demonstrate that our approach, titled HYDRA, achieves compressed networks with state-of-the-art benign and robust accuracy, simultaneously. We demonstrate the success of our approach across CIFAR-10, SVHN, and ImageNet dataset with four robust training techniques: iterative adversarial training, randomized smoothing, MixTrain, and CROWN-IBP. We also demonstrate the existence of highly robust sub-networks within non-robust networks. Our code and compressed networks are publicly available at \url{this https URL}.

73 citations

Posted Content
TL;DR: A fast-convergent federated learning algorithm, called , which performs intelligent sampling of devices in each round of model training to optimize the expected convergence speed and experimentally show its improvement in trained model accuracy, convergence speed, and/or model stability across various machine learning tasks and datasets.
Abstract: Federated learning has emerged recently as a promising solution for distributing machine learning tasks through modern networks of mobile devices. Recent studies have obtained lower bounds on the expected decrease in model loss that is achieved through each round of federated learning. However, convergence generally requires a large number of communication rounds, which induces delay in model training and is costly in terms of network resources. In this paper, we propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training to optimize the expected convergence speed. We first theoretically characterize a lower bound on improvement that can be obtained in each round if devices are selected according to the expected improvement their local models will provide to the current global model. Then, we show that FOLB obtains this bound through uniform sampling by weighting device updates according to their gradient information. FOLB is able to handle both communication and computation heterogeneity of devices by adapting the aggregations according to estimates of device's capabilities of contributing to the updates. We evaluate FOLB in comparison with existing federated learning algorithms and experimentally show its improvement in trained model accuracy, convergence speed, and/or model stability across various machine learning tasks and datasets.

66 citations


Cited by
More filters
01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Posted Content
TL;DR: WILDS is presented, a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, and is hoped to encourage the development of general-purpose methods that are anchored to real-world distribution shifts and that work well across different applications and problem settings.
Abstract: Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity, these real-world distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated collection of 8 benchmark datasets that reflect a diverse range of distribution shifts which naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training results in substantially lower out-of-distribution than in-distribution performance, and that this gap remains even with models trained by existing methods for handling distribution shifts. This underscores the need for new training methods that produce models which are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open-source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. Code and leaderboards are available at this https URL.

579 citations

Posted Content
TL;DR: This work evaluates robustness of models for their benchmark with AutoAttack, an ensemble of white- and black-box attacks which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications.
Abstract: As a research community, we are still lacking a systematic understanding of the progress on adversarial robustness, which often makes it hard to identify the most promising ideas in training robust models. A key challenge in benchmarking robustness is that its evaluation is often error-prone, leading to overestimation of the true robustness of models. While adaptive attacks designed for a particular defense are a potential solution, they have to be highly customized for particular models, which makes it difficult to compare different methods. Our goal is to instead establish a standardized benchmark of adversarial robustness, which as accurately as possible reflects the robustness of the considered models within a reasonable computational budget. To evaluate the robustness of models for our benchmark, we consider AutoAttack, an ensemble of white- and black-box attacks which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications. We also impose some restrictions on the admitted models to rule out defenses that only make gradient-based attacks ineffective without improving actual robustness. Our leaderboard, hosted at this https URL, contains evaluations of 90+ models and aims at reflecting the current state of the art on a set of well-defined tasks in $\ell_\infty$- and $\ell_2$-threat models and on common corruptions, with possible extensions in the future. Additionally, we open-source the library this https URL that provides unified access to 60+ robust models to facilitate their downstream applications. Finally, based on the collected models, we analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.

257 citations

Posted Content
TL;DR: This paper systematically study the effect of different training losses, model sizes, activation functions, the addition of unlabeled data (through pseudo-labeling) and other factors on adversarial robustness, and discovers that it is possible to train robust models that go well beyond state-of-the-art results.
Abstract: Adversarial training and its variants have become de facto standards for learning robust deep neural networks. In this paper, we explore the landscape around adversarial training in a bid to uncover its limits. We systematically study the effect of different training losses, model sizes, activation functions, the addition of unlabeled data (through pseudo-labeling) and other factors on adversarial robustness. We discover that it is possible to train robust models that go well beyond state-of-the-art results by combining larger models, Swish/SiLU activations and model weight averaging. We demonstrate large improvements on CIFAR-10 and CIFAR-100 against $\ell_\infty$ and $\ell_2$ norm-bounded perturbations of size $8/255$ and $128/255$, respectively. In the setting with additional unlabeled data, we obtain an accuracy under attack of 65.88% against $\ell_\infty$ perturbations of size $8/255$ on CIFAR-10 (+6.35% with respect to prior art). Without additional data, we obtain an accuracy under attack of 57.20% (+3.46%). To test the generality of our findings and without any additional modifications, we obtain an accuracy under attack of 80.53% (+7.62%) against $\ell_2$ perturbations of size $128/255$ on CIFAR-10, and of 36.88% (+8.46%) against $\ell_\infty$ perturbations of size $8/255$ on CIFAR-100. All models are available at this https URL.

196 citations

Proceedings Article
03 May 2021
TL;DR: This paper finds even over-parameterized deep networks may still have insufficient model capacity, because adversarial training has an overwhelming smoothing effect, and argues adversarial data should have unequal importance: geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversary data point should be assigned with larger/smaller weight.
Abstract: In adversarial machine learning, there was a common belief that robustness and accuracy hurt each other. The belief was challenged by recent studies where we can maintain the robustness and improve the accuracy. However, the other direction, whether we can keep the accuracy while improving the robustness, is conceptually and practically more interesting, since robust accuracy should be lower than standard accuracy for any model. In this paper, we show this direction is also promising. Firstly, we find even over-parameterized deep networks may still have insufficient model capacity, because adversarial training has an overwhelming smoothing effect. Secondly, given limited model capacity, we argue adversarial data should have unequal importance: geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight. Finally, to implement the idea, we propose geometry-aware instance-reweighted adversarial training, where the weights are based on how difficult it is to attack a natural data point. Experiments show that our proposal boosts the robustness of standard adversarial training; combining two directions, we improve both robustness and accuracy of standard adversarial training.

127 citations