scispace - formally typeset
Search or ask a question
Author

Vikram Srinivasan

Bio: Vikram Srinivasan is an academic researcher from Alcatel-Lucent. The author has contributed to research in topics: Wireless sensor network & Wireless network. The author has an hindex of 34, co-authored 82 publications receiving 4382 citations. Previous affiliations of Vikram Srinivasan include University of California, San Diego & Bell Labs.


Papers
More filters
Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper proposes a distributed and scalable acceptance algorithm called generous tit-for-tat (GTFT), which is used by the nodes to decide whether to accept or reject a relay request, and shows that GTFT results in a Nash equilibrium and proves that the system converges to the rational and optimal operating point.
Abstract: In wireless ad hoc networks, nodes communicate with far off destinations using intermediate nodes as relays. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios (complete cooperation and complete noncooperation) are inimical to the interests of a user. In this paper we address the issue of user cooperation in ad hoc networks. We assume that nodes are rational, i.e., their actions are strictly determined by self interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we are able to determine the optimal throughput that each node should receive. We define this to be the rational Pareto optimal operating point. We then propose a distributed and scalable acceptance algorithm called generous tit-for-tat (GTFT). The acceptance algorithm is used by the nodes to decide whether to accept or reject a relay request. We show that GTFT results in a Nash equilibrium and prove that the system converges to the rational and optimal operating point.

641 citations

Proceedings ArticleDOI
28 Aug 2005
TL;DR: This paper investigates the benefits of a heterogeneous architecture for wireless sensor networks composed of a few resource rich mobile nodes and a large number of simple static nodes and finds that using the mobile node as a sink results in the maximum improvement in lifetime.
Abstract: In this paper we investigate the benefits of a heterogeneous architecture for wireless sensor networks composed of a few resource rich mobile nodes and a large number of simple static nodes. These mobile nodes can either act as mobile relays or mobile sinks. To investigate the performance of these two options and the trade-offs associated with these two options, we first consider a finite network. We then compute the lifetime for different routing algorithms for three cases (i) when the network is all static (ii) when there is one mobile sink and (iii) when there is one mobile relay. We find that using the mobile node as a sink results in the maximum improvement in lifetime. We contend however that in hostile terrains, it might not always be possible for the sink to be mobile. We then investigate the performance of a large dense network with one mobile relay and show that the improvement in network lifetime over an all static network is upper bounded by a factor of four. Also, the proof implies that the mobile relay needs to stay only within a two hop radius of the sink. We then construct a joint mobility and routing algorithm which comes close to the upper bound. However this algorithm requires all the nodes in the network to be aware of the location of the mobile node. We then proposed an alternative algorithm, which achieves the same performance, but requires only a limited number of nodes in the network to be aware of the location of the mobile. We finally compare the performance of the mobile relay and mobile sink and show that for a densely deployed sensor field of radius R hops, we require O(R) mobile relays to achieve the same performance as the mobile sink.

427 citations

Proceedings ArticleDOI
28 Aug 2005
TL;DR: Overall the results demonstrate that PeopleNet, with its bazaar concept and peer-to-peer query propagation, can provide a simple and efficient mechanism for seeking information.
Abstract: People often seek information by asking other people even when they have access to vast reservoirs of information such as the Internet and libraries. This is because people are great sources of unique information, especially that which is location-specific, community-specific and time-specific. Social networking is effective because this type of information is often not easily available anywhere else. In this paper, we conceive a wireless virtual social network which mimics the way people seek information via social networking. PeopleNet is a simple, scalable and low-cost architecture for efficient information search in a distributed manner. It uses the infrastructure to propagate queries of a given type to users in specific geographic locations, called bazaars. Within each bazaar, the query is further propagated between neighboring nodes via peer-to-peer connectivity until it finds a matching query. The PeopleNet architecture can overlay easily on existing cellular infrastructure and entails minimal software installation. We identify three metrics for system performance: (i) probability of a match, (ii) time to find a match and (iii) number of matches found by a query. We describe two simple models, called the swap and spread models, for query propagation within a bazaar. We qualitatively argue that the swap model is better with respect to the performance metrics identified and demonstrate this via simulations. Next, we compute analytically the probability of match for the swap model. We show that the probability of match can be significantly improved if, prior to swapping queries, the nodes exchange some limited information about their buffer contents. We propose a simple greedy algorithm which uses this limited information to decide which queries to swap. We show via simulation that this algorithm achieves significantly better performance. Overall our results demonstrate that PeopleNet, with its bazaar concept and peer-to-peer query propagation, can provide a simple and efficient mechanism for seeking information.

337 citations

Proceedings ArticleDOI
22 Aug 2012
TL;DR: It is shown that the centralized architecture can potentially result in savings of at least 22 % in compute resources by exploiting the variations in the processing load across base stations, and a framework is designed that has two objectives: partitioning the set of base stations into groups that are simultaneously processed on a shared homogeneous compute platform for a given statistical guarantee.
Abstract: The cellular industry is evaluating architectures to distribute the signal processing in radio access networks One of the options is to process the signals of all base stations on a shared pool of compute resources in a central location In this centralized architecture, the existing base stations will be replaced with just the antennas and a few other active RF components, and the remainder of the digital processing including the physical layer will be carried out in a central location This model has potential benefits that include a reduction in the cost of operating the network due to fewer site visits, easy upgrades, and lower site lease costs, and an improvement in the network performance with joint signal processing techniques that span multiple base stations Further there is a potential to exploit variations in the processing load across base stations, to pool the base stations into fewer compute resources, thereby allowing the operator to either reduce energy consumption by turning the remaining processors off or reducing costs by provisioning fewer compute resources We focus on this aspect in this paperSpecifically, we make the following contributions in the paper Based on real-world data, we characterise the potential savings if shared homogeneous compute resources are used to process the signals from multiple base stations in the centralized architecture We show that the centralized architecture can potentially result in savings of at least 22 % in compute resources by exploiting the variations in the processing load across base stations These savings are achievable with statistical guarantees on successfully processing the base station's signals We also design a framework that has two objectives: (i) partitioning the set of base stations into groups that are simultaneously processed on a shared homogeneous compute platform for a given statistical guarantee, and (ii) scheduling the set of base stations allocated to a platform in order to meet their real-time processing requirements This partitioning and scheduling framework saves up to 19 % of the compute resources for a probability of failure of one in 100 million We refer to this solution as CloudIQ Finally we implement and extensively evaluate the CloudIQ framework with a 3GPP compliant implementation of 5 MHz LTE

253 citations

Journal ArticleDOI
TL;DR: This work studies the performance of a large dense network with one mobile relay and shows that network lifetime improves over that of a purely static network by up to a factor of four and constructs a joint mobility and routing algorithm which can yield a network lifetime close to the upper bound.
Abstract: We investigate the benefits of a heterogeneous architecture for wireless sensor networks (WSNs) composed of a few resource rich mobile relay nodes and a large number of simple static nodes. The mobile relays have more energy than the static sensors. They can dynamically move around the network and help relieve sensors that are heavily burdened by high network traffic, thus extending the latter's lifetime. We first study the performance of a large dense network with one mobile relay and show that network lifetime improves over that of a purely static network by up to a factor of four. Also, the mobile relay needs to stay only within a two-hop radius of the sink. We then construct a joint mobility and routing algorithm which can yield a network lifetime close to the upper bound. The advantage of this algorithm is that it only requires a limited number of nodes in the network to be aware of the location of the mobile relay. Our simulation results show that one mobile relay can at least double the network lifetime in a randomly deployed WSN. By comparing the mobile relay approach with various static energy-provisioning methods, we demonstrate the importance of node mobility for resource provisioning in a WSN.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey presents a comprehensive review of the recent literature since the publication of a survey on sensor networks, and gives an overview of several new applications and then reviews the literature on various aspects of WSNs.

5,626 citations

Book ChapterDOI
07 May 2006
TL;DR: It is shown that machine learning can be used to derive a feature detector which can fully process live PAL video using less than 7% of the available processing time.
Abstract: Where feature points are used in real-time frame-rate applications, a high-speed feature detector is necessary. Feature detectors such as SIFT (DoG), Harris and SUSAN are good methods which yield high quality features, however they are too computationally intensive for use in real-time applications of any complexity. Here we show that machine learning can be used to derive a feature detector which can fully process live PAL video using less than 7% of the available processing time. By comparison neither the Harris detector (120%) nor the detection stage of SIFT (300%) can operate at full frame rate. Clearly a high-speed detector is of limited use if the features produced are unsuitable for downstream processing. In particular, the same scene viewed from two different positions should yield features which correspond to the same real-world 3D locations [1]. Hence the second contribution of this paper is a comparison corner detectors based on this criterion applied to 3D scenes. This comparison supports a number of claims made elsewhere concerning existing corner detectors. Further, contrary to our initial expectations, we show that despite being principally constructed for speed, our detector significantly outperforms existing feature detectors according to this criterion.

3,828 citations

Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Journal Article
TL;DR: In this paper, the same scene viewed from two different positions should yield features which correspond to the same real-world 3D locations, and a comparison of corner detectors based on this criterion applied to 3D scenes is made.
Abstract: Where feature points are used in real-time frame-rate applications, a high-speed feature detector is necessary. Feature detectors such as SIFT (DoG), Harris and SUSAN are good methods which yield high quality features, however they are too computationally intensive for use in real-time applications of any complexity. Here we show that machine learning can be used to derive a feature detector which can fully process live PAL video using less than 7% of the available processing time. By comparison neither the Harris detector (120%) nor the detection stage of SIFT (300%) can operate at full frame rate. Clearly a high-speed detector is of limited use if the features produced are unsuitable for downstream processing. In particular, the same scene viewed from two different positions should yield features which correspond to the same real-world 3D locations[1]. Hence the second contribution of this paper is a comparison corner detectors based on this criterion applied to 3D scenes. This comparison supports a number of claims made elsewhere concerning existing corner detectors. Further, contrary to our initial expectations, we show that despite being principally constructed for speed, our detector significantly outperforms existing feature detectors according to this criterion. © Springer-Verlag Berlin Heidelberg 2006.

3,413 citations