scispace - formally typeset
Search or ask a question
Author

Viktor Papp

Bio: Viktor Papp is an academic researcher from University of Agriculture, Faisalabad. The author has contributed to research in topics: Biology & Basidiomycota. The author has an hindex of 11, co-authored 35 publications receiving 786 citations. Previous affiliations of Viktor Papp include Corvinus University of Budapest & Szent István University.

Papers
More filters
Journal ArticleDOI
TL;DR: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi), and treats 19 phyla of fungi, including all currently described orders of fungi.
Abstract: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.

381 citations

Journal ArticleDOI
TL;DR: Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Abstract: The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.

233 citations

Journal ArticleDOI
TL;DR: A phylogenetic tree of 5,284 fungal species is used to infer ages and broad patterns of speciation/extinction, diversification and morphological innovation in mushroom-forming fungi.
Abstract: Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.

172 citations

Journal ArticleDOI
Scott Thomson1, Richard L. Pyle2, Shane T. Ahyong3, Shane T. Ahyong4  +190 moreInstitutions (110)
TL;DR: Garnett and Christidis as mentioned in this paper argued that the lack of governance of taxonomy damages conservation efforts, harms the credibility of science, and is costly to society, and pointed out that the scientific community's failure to govern taxonomy threatens the effectiveness of global efforts to halt biodiversity loss.
Abstract: Taxonomy is a scientific discipline that has provided the universal naming and classification system of biodiversity for centuries and continues effectively to accommodate new knowledge. A recent publication by Garnett and Christidis [1] expressed concerns regarding the difficulty that taxonomic changes represent for conservation efforts and proposed the establishment of a system to govern taxonomic changes. Their proposal to “restrict the freedom of taxonomic action” through governing subcommittees that would “review taxonomic papers for compliance” and their assertion that “the scientific community’s failure to govern taxonomy threatens the effectiveness of global efforts to halt biodiversity loss, damages the credibility of science, and is expensive to society” are flawed in many respects. They also assert that the lack of governance of taxonomy damages conservation efforts, harms the credibility of science, and is costly to society. Despite its fairly recent release, Garnett and Christidis' proposition has already been rejected by a number of colleagues [2,3,4,5,6,7,8]. Herein, we contribute to the conversation between taxonomists and conservation biologists aiming to clarify some misunderstandings and issues in the proposition by Garnett and Christidis.

138 citations

Journal ArticleDOI
Pedro W. Crous, Michael J. Wingfield1, Treena I. Burgess2, G.E.St.J. Hardy2, Josepa Gené, Josep Guarro, Iuri Goulart Baseia3, Dania García, Luís Fernando Pascholati Gusmão4, Cristina Maria de Souza-Motta5, R. Thangavel6, Slavomír Adamčík7, A. Barili8, C. W. Barnes, Jadson D. P. Bezerra5, Juan-Julián Bordallo9, José F. Cano-Lira, R.J.V. de Oliveira5, Enrico Ercole10, Vit Hubka11, I. Iturrieta-González, Alena Kubátová11, María P. Martín12, Pierre-Arthur Moreau13, Asunción Morte9, M.E. Ordoñez8, A. Rodríguez9, Alberto M. Stchigel, Alfredo Vizzini10, Jafar Abdollahzadeh14, V.P. Abreu15, Katarína Adamčíková7, G.M.R. Albuquerque5, A. V. Alexandrova16, E. Alvarez Duarte17, C. Armstrong-Cho18, S. Banniza18, Renan do Nascimento Barbosa5, Jean-Michel Bellanger19, José Jailson Lima Bezerra5, T.S. Cabral3, M. Cabon7, E. Caicedo8, T. Cantillo4, Angus J. Carnegie, L.T. Carmo4, Rafael F. Castañeda-Ruiz, Charles R. Clement20, Adéla Čmoková, L.B. Conceição4, Rhudson Henrique Santos Ferreira da Cruz3, Ulrike Damm21, B.D.B. da Silva22, G. A. da Silva5, R. M. da Silva5, A. L. C. M. de A. Santiago5, L.F. De Oliveira23, C.A.F. De Souza5, Franck Déniel, Bálint Dima24, G. Dong25, Jacqueline Edwards26, Ciro R. Félix27, Jacques Fournier, Tatiana Baptista Gibertoni5, Kentaro Hosaka, Teresa Iturriaga28, M. Jadan, Jean-Luc Jany, Z. Jurjevic, Miroslav Kolarik11, I. Kusan, Melissa Fontes Landell27, T.R. Leite Cordeiro5, Diogo Xavier Lima5, Michael Loizides, S. Luo25, A. R. Machado5, Hugo Madrid29, Oliane Maria Correia Magalhães5, Paulo Marinho3, Neven Matočec, Armin Mešić, Andrew N. Miller30, O.V. Morozova31, R.P. Neves5, K. Nonaka32, Alena Nováková, Nicholas H. Oberlies33, José Ribamar C. Oliveira-Filho5, Thays Gabrielle Lins de Oliveira5, Viktor Papp34, Olinto Liparini Pereira15, Giancarlo Perrone, Stephen W. Peterson35, T.H.G. Pham, Huzefa A. Raja33, Daniel B. Raudabaugh28, J. Rehulka36, E. Rodríguez-Andrade, M. Saba37, A. Schauflerova, Roger G. Shivas38, G. Simonini, João Paulo Zen Siqueira, Julieth O. Sousa3, V. Stajsic39, T. Svetasheva31, T. Svetasheva40, Yu Pei Tan, Zdenko Tkalčec, S. Ullah41, Patricia Valente42, Nicomedes Valenzuela-Lopez43, Masoud Abrinbana44, D.A. Viana Marques23, P. T. W. Wong25, V. Xavier de Lima5, Johannes Z. Groenewald 
TL;DR: Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalyPTi on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid.
Abstract: Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoe banksiigena on Banksia marginata, Elsinoe elaeocarpi on Elaeocarpus sp., Elsinoe leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudoinconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis × urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand, Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided.

137 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The atlas compiled by these editors is a commendable effort and welcome addition to the mycology textbook sector.
Abstract: The atlas compiled by these editors is a commendable effort and welcome addition to the mycology textbook sector. Up until now, the publication of medical mycology textbooks has been sparse and those that have been published are either too detailed for a resident in training or practicing physician or do not provide sufficient photographs or illustrations of the main features of the mycotic organisms. As a lecturer in mycology for the dermatology residents at my local teaching hospital and program, there are 3 key objectives of my mycology lectures: (1) to provide some type of organizational approach to mycotic organisms, (2) to provide a concise clinical history, and (3) to provide as many photographs and illustrations of mycotic organisms as possible. This atlas provides an exemplary addition to my book collection on medical mycology textbooks and sources for illustrations of mycotic organisms. The electron photomicrographs, photoplates, and line drawings of

965 citations

Journal ArticleDOI
01 Sep 1926-Nature
TL;DR: The Washington Biological Society has just published a reprint at the price of one dollar of the Code ofworms, with the permission of the Commission.
Abstract: DURING this year I have so often been asked how this Code could be obtained that I hasten, with your permission, to announce that the Washington Biological Society has just published a reprint at the price of one dollar. Prof. C. W. Stiles, secretary to the Commission, says: “I would suggest that, if your colleagues wish copies, it would expedite matters to order a number at once”. The address of the Society is at the Bureau of Entomology, Washington, D.C., U.S.A.

525 citations

Journal ArticleDOI

443 citations

Journal ArticleDOI
TL;DR: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi), and treats 19 phyla of fungi, including all currently described orders of fungi.
Abstract: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.

381 citations

Journal ArticleDOI
Sergei Põlme1, Sergei Põlme2, Kessy Abarenkov2, R. Henrik Nilsson3, Björn D. Lindahl4, Karina E. Clemmensen4, Håvard Kauserud5, Nhu H. Nguyen6, Rasmus Kjøller7, Scott T. Bates8, Petr Baldrian9, Tobias Guldberg Frøslev7, Kristjan Adojaan1, Alfredo Vizzini10, Ave Suija1, Donald H. Pfister11, Hans Otto Baral, Helle Järv12, Hugo Madrid13, Hugo Madrid14, Jenni Nordén, Jian-Kui Liu15, Julia Pawłowska16, Kadri Põldmaa1, Kadri Pärtel1, Kadri Runnel1, Karen Hansen17, Karl-Henrik Larsson, Kevin D. Hyde18, Marcelo Sandoval-Denis, Matthew E. Smith19, Merje Toome-Heller20, Nalin N. Wijayawardene, Nelson Menolli21, Nicole K. Reynolds19, Rein Drenkhan22, Sajeewa S. N. Maharachchikumbura15, Tatiana Baptista Gibertoni23, Thomas Læssøe7, William J. Davis24, Yuri Tokarev, Adriana Corrales25, Adriene Mayra Soares, Ahto Agan1, A. R. Machado23, Andrés Argüelles-Moyao26, Andrew P. Detheridge, Angelina de Meiras-Ottoni23, Annemieke Verbeken27, Arun Kumar Dutta28, Bao-Kai Cui29, C. K. Pradeep, César Marín30, Daniel E. Stanton, Daniyal Gohar1, Dhanushka N. Wanasinghe31, Eveli Otsing1, Farzad Aslani1, Gareth W. Griffith, Thorsten Lumbsch32, Hans-Peter Grossart33, Hans-Peter Grossart34, Hossein Masigol35, Ina Timling36, Inga Hiiesalu1, Jane Oja1, John Y. Kupagme1, József Geml, Julieta Alvarez-Manjarrez26, Kai Ilves1, Kaire Loit22, Kalev Adamson22, Kazuhide Nara37, Kati Küngas1, Keilor Rojas-Jimenez38, Krišs Bitenieks39, Laszlo Irinyi40, Laszlo Irinyi41, Laszlo Nagy, Liina Soonvald22, Li-Wei Zhou31, Lysett Wagner33, M. Catherine Aime8, Maarja Öpik1, María Isabel Mujica30, Martin Metsoja1, Martin Ryberg42, Martti Vasar1, Masao Murata37, Matthew P. Nelsen32, Michelle Cleary4, Milan C. Samarakoon18, Mingkwan Doilom31, Mohammad Bahram1, Mohammad Bahram4, Niloufar Hagh-Doust1, Olesya Dulya1, Peter R. Johnston43, Petr Kohout9, Qian Chen31, Qing Tian18, Rajasree Nandi44, Rasekh Amiri1, Rekhani H. Perera18, Renata dos Santos Chikowski23, Renato Lucio Mendes-Alvarenga23, Roberto Garibay-Orijel26, Robin Gielen1, Rungtiwa Phookamsak31, Ruvishika S. Jayawardena18, Saleh Rahimlou1, Samantha C. Karunarathna31, Saowaluck Tibpromma31, Shawn P. Brown45, Siim-Kaarel Sepp1, Sunil Mundra46, Sunil Mundra5, Zhu Hua Luo47, Tanay Bose48, Tanel Vahter1, Tarquin Netherway4, Teng Yang31, Tom W. May49, Torda Varga, Wei Li50, Victor R. M. Coimbra23, Virton Rodrigo Targino de Oliveira23, Vitor Xavier de Lima23, Vladimir S. Mikryukov1, Yong-Zhong Lu51, Yosuke Matsuda52, Yumiko Miyamoto53, Urmas Kõljalg1, Urmas Kõljalg2, Leho Tedersoo1, Leho Tedersoo2 
University of Tartu1, American Museum of Natural History2, University of Gothenburg3, Swedish University of Agricultural Sciences4, University of Oslo5, University of Hawaii at Manoa6, University of Copenhagen7, Purdue University8, Academy of Sciences of the Czech Republic9, University of Turin10, Harvard University11, Synlab Group12, Universidad Santo Tomás13, Universidad Mayor14, University of Electronic Science and Technology of China15, University of Warsaw16, Swedish Museum of Natural History17, Mae Fah Luang University18, University of Florida19, Laos Ministry of Agriculture and Forestry20, São Paulo Federal Institute of Education, Science and Technology21, Estonian University of Life Sciences22, Federal University of Pernambuco23, United States Department of Energy24, Del Rosario University25, National Autonomous University of Mexico26, Ghent University27, West Bengal State University28, Beijing Forestry University29, Pontifical Catholic University of Chile30, Chinese Academy of Sciences31, Field Museum of Natural History32, Leibniz Association33, University of Potsdam34, University of Gilan35, University of Alaska Fairbanks36, University of Tokyo37, University of Costa Rica38, Forest Research Institute39, Westmead Hospital40, University of Sydney41, Uppsala University42, Landcare Research43, University of Chittagong44, University of Memphis45, United Arab Emirates University46, Ministry of Land and Resources of the People's Republic of China47, University of Pretoria48, Royal Botanic Gardens49, Ocean University of China50, Guizhou University51, Mie University52, Hokkaido University53
TL;DR: Fungal traits and character database FungalTraits operating at genus and species hypothesis levels is presented in this article, which includes 17 lifestyle related traits of fungal and Stramenopila genera.
Abstract: The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.

245 citations