scispace - formally typeset
Search or ask a question
Author

Vinay Gupta

Bio: Vinay Gupta is an academic researcher from Khalifa University. The author has contributed to research in topics: Organic solar cell & Polymer solar cell. The author has an hindex of 43, co-authored 165 publications receiving 8800 citations. Previous affiliations of Vinay Gupta include Kyoto University & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that graphene quantum dots blended with regioregular poly(3-hexylthiophene-2,5-diyl) or poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylenevinylene) polymer results in a significant improvement in the OPV characteristics as compared to GSs blended conjugated polymers.
Abstract: Recent research in organic photovoltaic (OPV) is largely focused on developing low cost OPV materials such as graphene. However, graphene sheets (GSs) blended conjugated polymers are known to show inferior OPV characteristics as compared to fullerene adduct blended with conjugated polymer. Here, we demonstrate that graphene quantum dots blended with regioregular poly(3-hexylthiophene-2,5-diyl) or poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylenevinylene) polymer results in a significant improvement in the OPV characteristics as compared to GSs blended conjugated polymers. This work has implications for inexpensive and efficient solar cells as well as organic light emitting diodes.

881 citations

Journal ArticleDOI
24 Apr 2013-ACS Nano
TL;DR: Analysis of the current-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the BHJ solar cells with different thicknesses of the Ca layer, revealing that the J-V curves are dominated by first-order recombination from the short-circuit condition to the maximum power point and evolve to bimolecular recombination in the range of voltage in the optimized device with a Ca thickness of 20 nm.
Abstract: Solution-processed small-molecule p-DTS(FBTTh2)2:PC71BM bulk heterojunction (BHJ) solar cells with power conversion efficiency of 8.01% are demonstrated. The fill factor (FF) is sensitive to the thickness of a calcium layer between the BHJ layer and the Al cathode; for 20 nm Ca thickness, the FF is 73%, the highest value reported for an organic solar cell. The maximum external quantum efficiency exceeds 80%. After correcting for the total absorption in the cell through normal incidence reflectance measurements, the internal quantum efficiency approaches 100% in the spectral range of 600–650 nm and well over 80% across the entire spectral range from 400 to 700 nm. Analysis of the current–voltage (J–V) characteristics at various light intensities provides information on the different recombination mechanisms in the BHJ solar cells with different thicknesses of the Ca layer. Our analysis reveals that the J–V curves are dominated by first-order recombination from the short-circuit condition to the maximum pow...

790 citations

Journal ArticleDOI
TL;DR: In inverted structure small-molecule (SM) solar cells with an efficiency of 7.88% are demonstrated using ZnO and PEIE as an interfacial layer and are relatively stable in air compared to conventional cells.
Abstract: We successfully demonstrate inverted structure small-molecule (SM) solar cells with an efficiency of 7.88% using ZnO and PEIE as an interfacial layer. Modification of ZnO with a cost-effective PEIE thin layer increases the efficiency of the inverted cell as a result of reducing the work function of the cathode and suppressing the trap-assisted recombination. In addition to the high efficiency, the inverted SM solar cells are relatively stable in air compared to conventional cells.

481 citations

Journal ArticleDOI
27 Mar 1998-Science
TL;DR: This approach to the detection of ligand-receptor binding does not require labeling of the analyte,does not require the use of electroanalytical apparatus, provides a spatial resolution of micrometers, and is sufficiently simple that it may find use in biochemical assays and imaging of spatially resolved chemical libraries.
Abstract: Liquid crystals (LCs) were used to amplify and transduce receptor-mediated binding of proteins at surfaces into optical outputs. Spontaneously organized surfaces were designed so that protein molecules, upon binding to ligands hosted on these surfaces, triggered changes in the orientations of 1- to 20-micrometer-thick films of supported LCs, thus corresponding to a reorientation of ∼10 5 to 10 6 mesogens per protein. Binding-induced changes in the intensity of light transmitted through the LC were easily seen with the naked eye and could be further amplified by using surfaces designed so that protein-ligand recognition causes twisted nematic LCs to untwist. This approach to the detection of ligand-receptor binding does not require labeling of the analyte, does not require the use of electroanalytical apparatus, provides a spatial resolution of micrometers, and is sufficiently simple that it may find use in biochemical assays and imaging of spatially resolved chemical libraries.

455 citations

Journal ArticleDOI
01 Jan 1999-Science
TL;DR: Electrochemical methods were combined with redox-active surfactants to actively control the motions and positions of aqueous and organic liquids on millimeter and smaller scales to guide droplets of organic liquids through simple fluidic networks.
Abstract: Electrochemical methods were combined with redox-active surfactants to actively control the motions and positions of aqueous and organic liquids on millimeter and smaller scales. Surfactant species generated at one electrode and consumed at another were used to manipulate the magnitude and direction of spatial gradients in surface tension and guide droplets of organic liquids through simple fluidic networks. Solid microparticles could be transported across unconfined surfaces. Electrochemical control of the position of surface-active species within aqueous films of liquid supported on homogeneous surfaces was used to direct these films into periodic arrays of droplets with deterministic shapes and sizes.

448 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Abstract: In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

7,642 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations