scispace - formally typeset
Search or ask a question
Author

Vincent Bourret

Bio: Vincent Bourret is an academic researcher from Laval University. The author has contributed to research in topics: Population & Salmo. The author has an hindex of 13, co-authored 14 publications receiving 1006 citations. Previous affiliations of Vincent Bourret include Institut national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: The development of a medium‐density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing is described and the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups is assessed.
Abstract: Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies In this study, we describe the development of a medium-density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing The array was used in the most extensive assessment of population genetic structure performed to date in this species A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others We also discuss the potential future applications of the SNP array for conservation, management and aquaculture

231 citations

Journal ArticleDOI
12 Jan 2011-Heredity
TL;DR: Results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions.
Abstract: In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions.

124 citations

Journal ArticleDOI
TL;DR: The most comprehensive genetic and genomic database for Atlantic salmon to date is used, covering the entire North American range of the species, and neutral and putatively selected loci are used to integrate adaptive information in the definition of conservation units.
Abstract: Anadromous Atlantic salmon (Salmo salar) is a species of major conservation and management concern in North America, where population abundance has been declining over the past 30 years. Effective conservation actions require the delineation of conservation units to appropriately reflect the spatial scale of intraspecific variation and local adaptation. Towards this goal, we used the most comprehensive genetic and genomic database for Atlantic salmon to date, covering the entire North American range of the species. The database included microsatellite data from 9142 individuals from 149 sampling locations and data from a medium-density SNP array providing genotypes for >3000 SNPs for 50 sampling locations. We used neutral and putatively selected loci to integrate adaptive information in the definition of conservation units. Bayesian clustering with the microsatellite data set and with neutral SNPs identified regional groupings largely consistent with previously published regional assessments. The use of outlier SNPs did not result in major differences in the regional groupings, suggesting that neutral markers can reflect the geographic scale of local adaptation despite not being under selection. We also performed assignment tests to compare power obtained from microsatellites, neutral SNPs and outlier SNPs. Using SNP data substantially improved power compared to microsatellites, and an assignment success of 97% to the population of origin and of 100% to the region of origin was achieved when all SNP loci were used. Using outlier SNPs only resulted in minor improvements to assignment success to the population of origin but improved regional assignment. We discuss the implications of these new genetic resources for the conservation and management of Atlantic salmon in North America.

116 citations

Journal ArticleDOI
TL;DR: This study showed that genetically based demographic indices, namely Nb and allelic richness (Ar) can be used as surrogates for the abundance of breeders and recruits, which were both shown to be positively influenced by variation during high NAO phases.
Abstract: We performed population genetic analyses on the American eel (Anguilla rostrata) with three main objectives. First, we conducted the most comprehensive analysis of neutral genetic population structure to date to revisit the null hypothesis of panmixia in this species. Second, we used this data to provide the first estimates of contemporary effective population size (Ne) and to document temporal variation in effective number of breeders (Nb) in American eel. Third, we tested for statistical associations between temporal variation in the North Atlantic Oscillation (NAO), the effective number of breeders and two indices of recruit abundance. A total of 2142 eels from 32 sampling locations were genotyped with 18 microsatellite loci. All measures of differentiation were essentially zero, and no evidence for significant spatial or temporal genetic differentiation was found. The panmixia hypothesis should thus be accepted for this species. Nb estimates varied by a factor of 23 among 12 cohorts, from 473 to 10 999. The effective population size Ne was estimated at 10 532 (95% CI, 9312–11 752). This study also showed that genetically based demographic indices, namely Nb and allelic richness (Ar), can be used as surrogates for the abundance of breeders and recruits, which were both shown to be positively influenced by variation during high (positive) NAO phases. Thus, long-term genetic monitoring of American glass eels at several sites along the North American Atlantic coast would represent a powerful and efficient complement to census monitoring to track demographic fluctuations and better understand their causes.

111 citations

Journal ArticleDOI
TL;DR: The utility of RAD‐seq based approaches for the resolution of complex spatial patterns is highlighted, a region of trans‐Atlantic secondary contact in Atlantic Salmon in Newfoundland is resolved, and the utility of multiple marker comparisons in identifying dynamics of introgression is demonstrated.
Abstract: Identification of discrete and unique assemblages of individuals or populations is central to the management of exploited species. Advances in population genomics provide new opportunities for re-evaluating existing conservation units but comparisons among approaches remain rare. We compare the utility of RAD-seq, a single nucleotide polymorphism (SNP) array and a microsatellite panel to resolve spatial structuring under a scenario of possible trans-Atlantic secondary contact in a threatened Atlantic Salmon, Salmo salar, population in southern Newfoundland. Bayesian clustering indentified two large groups subdividing the existing conservation unit and multivariate analyses indicated significant similarity in spatial structuring among the three data sets. mtDNA alleles diagnostic for European ancestry displayed increased frequency in southeastern Newfoundland and were correlated with spatial structure in all marker types. Evidence consistent with introgression among these two groups was present in both SNP data sets but not the microsatellite data. Asymmetry in the degree of introgression was also apparent in SNP data sets with evidence of gene flow towards the east or European type. This work highlights the utility of RAD-seq based approaches for the resolution of complex spatial patterns, resolves a region of trans-Atlantic secondary contact in Atlantic Salmon in Newfoundland and demonstrates the utility of multiple marker comparisons in identifying dynamics of introgression.

95 citations


Cited by
More filters
Journal ArticleDOI
04 Nov 2015-Nature
TL;DR: This work identifies a large effect locus controlling age at maturity in Atlantic salmon, an important fitness trait in which selection favours earlier maturation in males than females, and shows it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations.
Abstract: Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.

482 citations

Journal ArticleDOI
TL;DR: A method is proposed to detect whether IBDL, IBA and M shape genetic differentiation in natural landscapes by studying patterns of variation at neutral and non‐neutral markers as well as at ecologically relevant traits and reinterpret a representative number of studies by associating patterns to processes.
Abstract: Empirical population genetic studies have been dominated by a neutralist view, according to which gene flow and drift are the main forces driving population genetic structure in nature. The neutralist view in essence describes a process of isolation by dispersal limitation (IBDL) that generally leads to a pattern of isolation by distance (IBD). Recently, however, conceptual frameworks have been put forward that view local genetic adaptation as an important driver of population genetic structure. Isolation by adaptation (IBA) and monopolization (M) posit that gene flow among natural populations is reduced as a consequence of local genetic adaptation. IBA stresses that effective gene flow is reduced among habitats that show dissimilar ecological characteristics, leading to a pattern of isolation by environment. In monopolization, local genetic adaptation of initial colonizing genotypes results in a reduction in gene flow that fosters the persistence of founder effects. Here, we relate these different processes driving landscape genetic structure to patterns of IBD and isolation by environment (IBE). We propose a method to detect whether IBDL, IBA and M shape genetic differentiation in natural landscapes by studying patterns of variation at neutral and non-neutral markers as well as at ecologically relevant traits. Finally, we reinterpret a representative number of studies from the recent literature by associating patterns to processes and identify patterns associated with local genetic adaptation to be as common as IBDL in structuring regional genetic variation of populations in the wild. Our results point to the importance of quantifying environmental gradients and incorporating ecology in the analysis of population genetics.

379 citations

Journal ArticleDOI
TL;DR: This study indicates that RDA is an effective means of detecting adaptation, including signatures of weak, multilocus selection, providing a powerful tool for investigating the genetic basis of local adaptation.
Abstract: Identifying adaptive loci can provide insight into the mechanisms underlying local adaptation. Genotype-environment association (GEA) methods, which identify these loci based on correlations between genetic and environmental data, are particularly promising. Univariate methods have dominated GEA, despite the high dimensional nature of genotype and environment. Multivariate methods, which analyse many loci simultaneously, may be better suited to these data as they consider how sets of markers covary in response to environment. These methods may also be more effective at detecting adaptive processes that result in weak, multilocus signatures. Here, we evaluate four multivariate methods and five univariate and differentiation-based approaches, using published simulations of multilocus selection. We found that Random Forest performed poorly for GEA. Univariate GEAs performed better, but had low detection rates for loci under weak selection. Constrained ordinations, particularly redundancy analysis (RDA), showed a superior combination of low false-positive and high true-positive rates across all levels of selection. These results were robust across the demographic histories, sampling designs, sample sizes and weak population structure tested here. The value of combining detections from different methods was variable and depended on the study goals and knowledge of the drivers of selection. Re-analysis of genomic data from grey wolves highlighted the unique, covarying sets of adaptive loci that could be identified using RDA. Although additional testing is needed, this study indicates that RDA is an effective means of detecting adaptation, including signatures of weak, multilocus selection, providing a powerful tool for investigating the genetic basis of local adaptation.

311 citations

01 Jan 2014
TL;DR: In this article, the authors provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection, and investigate the power and robustness of eight methods to identify loci potentially under selection.
Abstract: Thanks to genome-scale diversity data, present-day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up-to-date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self-fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype-environment correlations and five designed to detect adaptive differentiation (based on F(ST) or similar measures). We show that genotype-environment correlation methods have substantially more power to detect selection than differentiation-based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype-environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations. (Texte integral)

303 citations

Journal ArticleDOI
TL;DR: For advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate ‘flexible’ modes of inheritance.
Abstract: Despite the importance of polyploidy and the increasing availability of new genomic data, there remain important gaps in our knowledge of polyploid population genetics. These gaps arise from the complex nature of polyploid data (e.g. multiple alleles and loci, mixed inheritance patterns, association between ploidy and mating system variation). Furthermore, many of the standard tools for population genetics that have been developed for diploids are often not feasible for polyploids. This review aims to provide an overview of the state-of-the-art in polyploid population genetics and to identify the main areas where further development of molecular techniques and statistical theory is required. We review commonly used molecular tools (amplified fragment length polymorphism, microsatellites, Sanger sequencing, next-generation sequencing and derived technologies) and their challenges associated with their use in polyploid populations: that is, allele dosage determination, null alleles, difficulty of distinguishing orthologues from paralogues and copy number variation. In addition, we review the approaches that have been used for population genetic analysis in polyploids and their specific problems. These problems are in most cases directly associated with dosage uncertainty and the problem of inferring allele frequencies and assumptions regarding inheritance. This leads us to conclude that for advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate ‘flexible’ modes of inheritance. In addition, there is a need for more simulation-based studies that test what kinds of biases could result from both existing and novel approaches.

300 citations