scispace - formally typeset
Search or ask a question
Author

Vincent Laude

Bio: Vincent Laude is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Acoustic wave & Band gap. The author has an hindex of 49, co-authored 344 publications receiving 8315 citations. Previous affiliations of Vincent Laude include University of Franche-Comté & University of Burgundy.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated experimentally that an arbitrary phase and amplitude profile can be applied to an ultrashort pulse by use of an acousto-optic programmable dispersive filter (AOPDF) that has a large group-delay range and a 30% diffraction efficiency over 150 THz.
Abstract: We demonstrate experimentally that an arbitrary phase and amplitude profile can be applied to an ultrashort pulse by use of an acousto-optic programmable dispersive filter (AOPDF). Our filter has a large group-delay range that extends over 3 ps and a 30% diffraction efficiency over 150 THz. Experiments were conducted on a kilohertz chirped-pulse amplification laser chain capable of generating 30-fs pulses without additional pulse shaping. Compensating for gain narrowing and residual phase errors with an AOPDF in place of the stretcher results in 17-fs transform-limited pulses. Arbitrary shaping of these 17-fs pulses is also demonstrated in both the temporal and the spectral domains.

529 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the guiding and bending of acoustic waves in highly confined waveguides formed by removing rods from a periodic two-dimensional lattice of steel cylinders immersed in water.
Abstract: We demonstrate experimentally the guiding and the bending of acoustic waves in highly confined waveguides formed by removing rods from a periodic two-dimensional lattice of steel cylinders immersed in water. Full transmission is observed for a one-period-wide straight waveguide within the full band gap of the perfect phononic crystal. However, when the waveguide width is doubled, destructive interference causes the transmission to vanish in the center of the passband. Waveguiding over a wide frequency range is obtained for a one-period-wide waveguide with two sharp 90° bends. Finite-difference time-domain computations are found to be in good agreement with the measurements.

421 citations

Journal ArticleDOI
TL;DR: The propagation of acoustic waves in a phononic crystal slab consisting of piezoelectric inclusions placed periodically in an isotropic host material is analyzed and it is observed that the band gaps of a phononics crystal slab are distinct from those of bulk acoustic waves propagating in the plane of an infinite two-dimensional phononic Crystal.
Abstract: The propagation of acoustic waves in a phononic crystal slab consisting of piezoelectric inclusions placed periodically in an isotropic host material is analyzed. Numerical examples are obtained for a square lattice of quartz cylinders embedded in an epoxy matrix. It is found that several complete band gaps with a variable bandwidth exist for elastic waves of any polarization and incidence. In addition to the filling fraction, it is found that a key parameter for the existence and the width of these complete band gaps is the ratio of the slab thickness, d, to the lattice period, a. Especially, we have explored how these absolute band gaps close up as the parameter d/a increases. Significantly, it is observed that the band gaps of a phononic crystal slab are distinct from those of bulk acoustic waves propagating in the plane of an infinite two-dimensional phononic crystal with the same composition. The band gaps of the slab are strongly affected by the presence of cutoff frequency modes that cannot be excited in infinite media.

377 citations

Journal ArticleDOI
TL;DR: A complete surface acoustic wave band gap is found experimentally in a two-dimensional square-lattice piezoelectric phononic crystal etched in lithium niobate, in good agreement with theoretical predictions.
Abstract: A complete surface acoustic wave band gap is found experimentally in a two-dimensional square-lattice piezoelectric phononic crystal etched in lithium niobate. Propagation in the phononic crystal is studied by direct generation and detection of surface waves using interdigital transducers. The complete band gap extends from 203 to 226 MHZ, in good agreement with theoretical predictions. Near the upper edge of the complete band gap, it is observed that radiation to the bulk of the substrate dominates. This observation is explained by introducing the concept of the sound line.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the experimental observation of the existence and the interaction of localized defect modes in a full acoustic band gap in a two-dimensional lattice of steel cylinders immersed in water.
Abstract: We report on the experimental observation of the existence and the interaction of localized defect modes in a full acoustic band gap in a two-dimensional lattice of steel cylinders immersed in water. The confinement of defect modes and the splitting of their resonance frequencies are observed and are explained by their evanescent coupling. A different type of waveguiding in a phononic crystal based on the evanescent coupling of defect modes is proposed and demonstrated experimentally. The finite-difference time-domain method is used to interpret the experimental data and it is found that theoretical predictions properly account for the observed spectra.

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Proceedings Article
Ferenc Krausz1
01 Aug 2007
TL;DR: In this paper, an attosecond "oscilloscope" was used to visualize the oscillating electric field of visible light with an oscillator and probe multi-electron dynamics in atoms, molecules and solids.
Abstract: Summary form only given. Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (XUV) burst lasting less than one femtosecond. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated sub-femtosecond XUV pulses, demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time scale. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond "oscilloscope", to control single-electron and probe multi-electron dynamics in atoms, molecules and solids. Recent experiments hold promise for the development of an attosecond X-ray source, which may pave the way towards 4D electron imaging with sub-atomic resolution in space and time.

1,618 citations

Journal ArticleDOI
TL;DR: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed.
Abstract: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed

1,488 citations