scispace - formally typeset
Search or ask a question
Author

Vincent Lepetit

Bio: Vincent Lepetit is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Pose & Object detection. The author has an hindex of 70, co-authored 268 publications receiving 26207 citations. Previous affiliations of Vincent Lepetit include École Polytechnique Fédérale de Lausanne & KAIST.


Papers
More filters
Book ChapterDOI
05 Sep 2010
TL;DR: This work proposes to use binary strings as an efficient feature point descriptor, which is called BRIEF, and shows that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests.
Abstract: We propose to use binary strings as an efficient feature point descriptor, which we call BRIEF. We show that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests. Furthermore, the descriptor similarity can be evaluated using the Hamming distance, which is very efficient to compute, instead of the L2 norm as is usually done. As a result, BRIEF is very fast both to build and to match. We compare it against SURF and U-SURF on standard benchmarks and show that it yields a similar or better recognition performance, while running in a fraction of the time required by either.

3,558 citations

Journal ArticleDOI
TL;DR: A non-iterative solution to the PnP problem—the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences—whose computational complexity grows linearly with n, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix.
Abstract: We propose a non-iterative solution to the PnP problem--the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences--whose computational complexity grows linearly with n This is in contrast to state-of-the-art methods that are O(n 5) or even O(n 8), without being more accurate Our method is applicable for all n?4 and handles properly both planar and non-planar configurations Our central idea is to express the n 3D points as a weighted sum of four virtual control points The problem then reduces to estimating the coordinates of these control points in the camera referential, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix and solving a small constant number of quadratic equations to pick the right weights Furthermore, if maximal precision is required, the output of the closed-form solution can be used to initialize a Gauss-Newton scheme, which improves accuracy with negligible amount of additional time The advantages of our method are demonstrated by thorough testing on both synthetic and real-data

2,598 citations

Journal ArticleDOI
TL;DR: An EM-based algorithm to compute dense depth and occlusion maps from wide-baseline image pairs using a local image descriptor, DAISY, which is very efficient to compute densely and robust against many photometric and geometric transformations.
Abstract: In this paper, we introduce a local image descriptor, DAISY, which is very efficient to compute densely. We also present an EM-based algorithm to compute dense depth and occlusion maps from wide-baseline image pairs using this descriptor. This yields much better results in wide-baseline situations than the pixel and correlation-based algorithms that are commonly used in narrow-baseline stereo. Also, using a descriptor makes our algorithm robust against many photometric and geometric transformations. Our descriptor is inspired from earlier ones such as SIFT and GLOH but can be computed much faster for our purposes. Unlike SURF, which can also be computed efficiently at every pixel, it does not introduce artifacts that degrade the matching performance when used densely. It is important to note that our approach is the first algorithm that attempts to estimate dense depth maps from wide-baseline image pairs, and we show that it is a good one at that with many experiments for depth estimation accuracy, occlusion detection, and comparing it against other descriptors on laser-scanned ground truth scenes. We also tested our approach on a variety of indoor and outdoor scenes with different photometric and geometric transformations and our experiments support our claim to being robust against these.

1,484 citations

Book ChapterDOI
05 Nov 2012
TL;DR: A framework for automatic modeling, detection, and tracking of 3D objects with a Kinect and shows how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time.
Abstract: We propose a framework for automatic modeling, detection, and tracking of 3D objects with a Kinect. The detection part is mainly based on the recent template-based LINEMOD approach [1] for object detection. We show how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time. The pose estimation and the color information allow us to check the detection hypotheses and improves the correct detection rate by 13% with respect to the original LINEMOD. These many improvements make our framework suitable for object manipulation in Robotics applications. Moreover we propose a new dataset made of 15 registered, 1100+ frame video sequences of 15 various objects for the evaluation of future competing methods.

1,114 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This work introduces a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description, and shows how to learn to do all three in a unified manner while preserving end-to-end differentiability.
Abstract: We introduce a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description. While previous works have successfully tackled each one of these problems individually, we show how to learn to do all three in a unified manner while preserving end-to-end differentiability. We then demonstrate that our Deep pipeline outperforms state-of-the-art methods on a number of benchmark datasets, without the need of retraining.

878 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Abstract: Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection. Our recording platform is equipped with four high resolution video cameras, a Velodyne laser scanner and a state-of-the-art localization system. Our benchmarks comprise 389 stereo and optical flow image pairs, stereo visual odometry sequences of 39.2 km length, and more than 200k 3D object annotations captured in cluttered scenarios (up to 15 cars and 30 pedestrians are visible per image). Results from state-of-the-art algorithms reveal that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias by providing challenging benchmarks with novel difficulties to the computer vision community. Our benchmarks are available online at: www.cvlibs.net/datasets/kitti

11,283 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations