scispace - formally typeset
Search or ask a question
Author

Vincent Vanhoucke

Other affiliations: Stanford University
Bio: Vincent Vanhoucke is an academic researcher from Google. The author has contributed to research in topics: Artificial neural network & Reinforcement learning. The author has an hindex of 42, co-authored 75 publications receiving 87969 citations. Previous affiliations of Vincent Vanhoucke include Stanford University.


Papers
More filters
01 Jan 2011
TL;DR: This paper uses speech recognition as an example task, and shows that a real-time hybrid hidden Markov model / neural network (HMM/NN) large vocabulary system can be built with a 10× speedup over an unoptimized baseline and a 4× speed up over an aggressively optimized floating-point baseline at no cost in accuracy.
Abstract: Recent advances in deep learning have made the use of large, deep neural networks with tens of millions of parameters suitable for a number of applications that require real-time processing. The sheer size of these networks can represent a challenging computational burden, even for modern CPUs. For this reason, GPUs are routinely used instead to train and run such networks. This paper is a tutorial for students and researchers on some of the techniques that can be used to reduce this computational cost considerably on modern x86 CPUs. We emphasize data layout, batching of the computation, the use of SSE2 instructions, and particularly leverage SSSE3 and SSE4 fixed-point instructions which provide a 3× improvement over an optimized floating-point baseline. We use speech recognition as an example task, and show that a real-time hybrid hidden Markov model / neural network (HMM/NN) large vocabulary system can be built with a 10× speedup over an unoptimized baseline and a 4× speedup over an aggressively optimized floating-point baseline at no cost in accuracy. The techniques described extend readily to neural network training and provide an effective alternative to the use of specialized hardware.

883 citations

Proceedings ArticleDOI
26 May 2013
TL;DR: This work shows that it can improve generalization and make training of deep networks faster and simpler by substituting the logistic units with rectified linear units.
Abstract: Deep neural networks have recently become the gold standard for acoustic modeling in speech recognition systems The key computational unit of a deep network is a linear projection followed by a point-wise non-linearity, which is typically a logistic function In this work, we show that we can improve generalization and make training of deep networks faster and simpler by substituting the logistic units with rectified linear units These units are linear when their input is positive and zero otherwise In a supervised setting, we can successfully train very deep nets from random initialization on a large vocabulary speech recognition task achieving lower word error rates than using a logistic network with the same topology Similarly in an unsupervised setting, we show how we can learn sparse features that can be useful for discriminative tasks All our experiments are executed in a distributed environment using several hundred machines and several hundred hours of speech data

541 citations

Proceedings ArticleDOI
26 Jun 2018
TL;DR: This system can learn quadruped locomotion from scratch using simple reward signals and users can provide an open loop reference to guide the learning process when more control over the learned gait is needed.
Abstract: Designing agile locomotion for quadruped robots often requires extensive expertise and tedious manual tuning. In this paper, we present a system to automate this process by leveraging deep reinforcement learning techniques. Our system can learn quadruped locomotion from scratch using simple reward signals. In addition, users can provide an open loop reference to guide the learning process when more control over the learned gait is needed. The control policies are learned in a physics simulator and then deployed on real robots. In robotics, policies trained in simulation often do not transfer to the real world. We narrow this reality gap by improving the physics simulator and learning robust policies. We improve the simulation using system identification, developing an accurate actuator model and simulating latency. We learn robust controllers by randomizing the physical environments, adding perturbations and designing a compact observation space. We evaluate our system on two agile locomotion gaits: trotting and galloping. After learning in simulation, a quadruped robot can successfully perform both gaits in the real world.

520 citations

Proceedings ArticleDOI
Esteban Real1, Jonathon Shlens1, Stefano Mazzocchi1, Xin Pan1, Vincent Vanhoucke1 
01 Jul 2017
TL;DR: A new large-scale data set of video URLs with densely-sampled object bounding box annotations called YouTube-BoundingBoxes (YT-BB), which consists of approximately 380,000 video segments automatically selected to feature objects in natural settings without editing or post-processing.
Abstract: We introduce a new large-scale data set of video URLs with densely-sampled object bounding box annotations called YouTube-BoundingBoxes (YT-BB). The data set consists of approximately 380,000 video segments about 19s long, automatically selected to feature objects in natural settings without editing or post-processing, with a recording quality often akin to that of a hand-held cell phone camera. The objects represent a subset of the COCO [32] label set. All video segments were human-annotated with high-precision classification labels and bounding boxes at 1 frame per second. The use of a cascade of increasingly precise human annotations ensures a label accuracy above 95% for every class and tight bounding boxes. Finally, we train and evaluate well-known deep network architectures and report baseline figures for per-frame classification and localization. We also demonstrate how the temporal contiguity of video can potentially be used to improve such inferences. The data set can be found at https://research.google.com/youtube-bb. We hope the availability of such large curated corpus will spur new advances in video object detection and tracking.

501 citations

Patent
09 May 2006
TL;DR: In this paper, a collection of captured images that form at least a portion of a library of images is used to enable retrieval of the captured images, and an index is generated where the index data is based on recognized information.
Abstract: An embodiment provides for enabling retrieval of a collection of captured images that form at least a portion of a library of images. For each image in the collection, a captured image may be analyzed to recognize information from image data contained in the captured image, and an index may be generated, where the index data is based on the recognized information. Using the index, functionality such as search and retrieval is enabled. Various recognition techniques, including those that use the face, clothing, apparel, and combinations of characteristics may be utilized. Recognition may be performed on, among other things, persons and text carried on objects.

463 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations