scispace - formally typeset
Search or ask a question
Author

Vincent Vionnet

Bio: Vincent Vionnet is an academic researcher from University of Saskatchewan. The author has contributed to research in topics: Snow & Snowpack. The author has an hindex of 21, co-authored 65 publications receiving 2165 citations. Previous affiliations of Vincent Vionnet include University of Grenoble & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: SURFEX as mentioned in this paper is an externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean.
Abstract: . SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

573 citations

Journal ArticleDOI
TL;DR: The detailed snowpack model Crocus as mentioned in this paper is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 years, and is also used for climate or hydrological studies.
Abstract: . Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 yr. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface and the atmosphere. It includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere). It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics) with atmospheric models ranging from meso-scale models to general circulation models. This approach also ensures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1-D stand-alone simulation (Col de Porte, France) to fully-distributed simulations in complex terrain over a whole mountain range (Massif des Grandes Rousses, France), or in coupled mode such as a surface energy balance and boundary layer simulation over the East Antarctic Ice Sheet (Dome C).

516 citations

Journal ArticleDOI
TL;DR: The Meso-NH model as discussed by the authors is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry.
Abstract: . This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998) and provide an overview of recent applications and couplings.

210 citations

Journal ArticleDOI
TL;DR: In this article, the Crocus snowpack model within the Interactions between Soil-Biosphere-Atmosphere (ISBA) land surface model was run over northern Eurasia from 1979 to 1993, using forcing data extracted from hydrometeorological datasets and meteorological reanalyses.
Abstract: The Crocus snowpack model within the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model was run over northern Eurasia from 1979 to 1993, using forcing data extracted from hydrometeorological datasets and meteorological reanalyses. Simulated snow depth, snow water equivalent, and density over open fields were compared with local observations from over 1000 monitoring sites, available either once a day or three times per month. The best performance is obtained with European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim). Provided blowing snow sublimation is taken into account, the simulations show a small bias and high correlations in terms of snow depth, snow water equivalent, and density. Local snow cover durations as well as the onset and vanishing dates of continuous snow cover are also well reproduced. A major result is that the overall performance of the simulations is very similar to the performance of existing gridded snow products, ...

122 citations

Journal ArticleDOI
TL;DR: A review of wind-driven coupling processes for seasonal snow cover and its spatial variability in environments such as mountains, prairies or polar regions is presented in this paper, which combines the more recent findings obtained from observations and modelling.
Abstract: The temporal evolution of seasonal snow cover and its spatial variability in environments such as mountains, prairies or polar regions is strongly influenced by the interactions between the atmospheric boundary layer and the snow cover. Wind-driven coupling processes affect both mass and energy fluxes at the snow surface with consequences on snow hydrology, avalanche hazard and ecosystem development. This paper proposes a review on these processes and combines the more recent findings obtained from observations and modelling. The spatial variability of snow accumulation across multiple scales can be associated to wind-driven processes ranging from orographic precipitation at large scale to preferential-deposition of snowfall and wind-induced transport of snow on the ground at smaller scales. An overview of models of varying complexity developed to simulate these processes is proposed in this paper. Snow ablation is also affected by wind-driven processes. Over continuous snow covers, turbulent fluxes of latent and sensible heat, as well as blowing snow sublimation, modify the mass and energy balance of the snowpack and their representation in numerical models is associated with many uncertainties. As soon as the snow cover becomes patchy in spring local heat advection induces the developement of stable internal boundary layers changing heat exchange towards the snow. Overall, wind-driven processes play a key role in all the different stages of the evolution of seasonal snow. Improvements in process understanding particularly at the mountain-ridge and the slope scale, and processes representations in models at scales up to the mountain range scale, will be the basis for improved short-term forecast and climate projections in snow-covered regions.

112 citations


Cited by
More filters
07 Jan 2013
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

1,048 citations

Journal ArticleDOI
TL;DR: The WFDEI data set has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data.
Abstract: The WFDEI meteorological forcing data set has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. We discuss the specifics of how changes in the reanalysis and processing have led to improvement over the WFD. We attribute improvements in precipitation and wind speed to the latest reanalysis basis data and improved downward shortwave fluxes to the changes in the aerosol corrections. Covering 1979–2012, the WFDEI will allow more thorough comparisons of hydrological and Earth System model outputs with hydrologically and phenologically relevant satellite products than using the WFD.

873 citations

Journal ArticleDOI
TL;DR: The Global Atmosphere 3.0 (GA3.0) as mentioned in this paper is a configuration of the Met Office Unified Model (MetUM) developed for use across climate research and weather prediction activities.
Abstract: . We describe Global Atmosphere 3.0 (GA3.0): a configuration of the Met Office Unified Model (MetUM) developed for use across climate research and weather prediction activities. GA3.0 has been formulated by converging the development paths of the Met Office's weather and climate global atmospheric model components such that wherever possible, atmospheric processes are modelled or parametrized seamlessly across spatial resolutions and timescales. This unified development process will provide the Met Office and its collaborators with regular releases of a configuration that has been evaluated, and can hence be applied, over a variety of modelling regimes. We also describe Global Land 3.0 (GL3.0): a configuration of the JULES community land surface model developed for use with GA3.0. This paper provides a comprehensive technical and scientific description of the GA3.0 and GL3.0 (and related GA3.1 and GL3.1) configurations and presents the results of some initial evaluations of their performance in various applications. It is to be the first in a series of papers describing each subsequent Global Atmosphere release; this will provide a single source of reference for established users and developers as well as researchers requiring access to a current, but trusted, global MetUM setup.

803 citations

Journal ArticleDOI
TL;DR: SURFEX as mentioned in this paper is an externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean.
Abstract: . SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

573 citations

Journal ArticleDOI
TL;DR: The detailed snowpack model Crocus as mentioned in this paper is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 years, and is also used for climate or hydrological studies.
Abstract: . Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 yr. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface and the atmosphere. It includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere). It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics) with atmospheric models ranging from meso-scale models to general circulation models. This approach also ensures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1-D stand-alone simulation (Col de Porte, France) to fully-distributed simulations in complex terrain over a whole mountain range (Massif des Grandes Rousses, France), or in coupled mode such as a surface energy balance and boundary layer simulation over the East Antarctic Ice Sheet (Dome C).

516 citations