scispace - formally typeset
Search or ask a question
Author

Vincenzo Dossena

Bio: Vincenzo Dossena is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Turbine & Wind tunnel. The author has an hindex of 20, co-authored 83 publications receiving 1065 citations.
Topics: Turbine, Wind tunnel, Aerodynamics, Nozzle, Cascade


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a critical evaluation of the feasibility of multistage transonic centrifugal turbines for ORC systems is presented, and a two-step design procedure, specifically oriented to ORC turbines, is developed.
Abstract: Organic rankine cycles (ORC) are renowned to be attractive energy conversion systems for the thermal energy sources in the small-to-medium power range. A critical component in the ORC technology is the turbo-expander; the difficulties involved in the accurate thermodynamic modeling of organic fluids and, especially, the complex gasdynamic phenomena that are commonly found in ORC turbines may result in relatively low efficiency and in performance reduction at partial loads. In this perspective, a relevant path of development can be outlined in the evaluation of nonconventional turbine architectures, such as the radial-outward or centrifugal turbine. In the present work, a critical evaluation of the feasibility of multistage transonic centrifugal turbines for ORC systems is presented. To support this study, a two-step design procedure, specifically oriented to ORC turbines, was developed. The methodology includes a 1D mean-line code coupled to an external optimizer to perform a preliminary design of the machine. The selected configurations are then verified with a CFD (computational fluid dynamics)-based throughflow solver, able to deal with any flow regime and to treat fluids described by arbitrary equations of state. The overall procedure is applied to the design of two different turbines of the same target power of about 1 MW, the former representing a transonic six-stage turbine and the latter a supersonic three-stage turbine. The two machines are characterized by very different shape and comparable performances. The results are extensively discussed in terms of both overall data and detailed flow fields.

82 citations

Journal ArticleDOI
TL;DR: In this article, the results of a detailed investigation of the flow field in a gas turbine linear cascade are presented, and a comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the 3D flow field are analyzed and discussed.
Abstract: The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a three-dimensional Navier-Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field have been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high-pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development are inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass-averaged losses shows a significant performance improvement in the contoured cascade. This can be ascribed not only to lower secondary losses but also to a reduction of the profile losses.

59 citations

Journal ArticleDOI
TL;DR: In this paper, the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions are described. But the results are limited to five incidence angles from − 60 to + 35 deg, and for three pitch-chord ratios: s/c = 0.58, 0.73, and 0.87.
Abstract: This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from − 60 to + 35 deg, and for three pitch-chord ratios: s/c = 0.58, 0.73, 0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five-hole probe in a plane located at 50 percent of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots, show in detail how much the secondary flow field is modified both by incidence and by cascade solidity variations

52 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

01 Jan 2002
TL;DR: In this article, the aerodynamic design and performance of VAWTs based on the Darrieus concept is discussed, as well as future trends in design and the inherent socioeconomic and environmental friendly aspects of wind energy as an alternate source of energy.
Abstract: Wind energy is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal-Axis Wind Turbine (HAWT) or a Vertical-Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.

549 citations

Journal ArticleDOI
TL;DR: This review summarizes recent experimental, computational, and theoretical research efforts that have contributed to improving the understanding and ability to predict the interactions of ABL flow with wind turbines and wind farms.
Abstract: Wind energy, together with other renewable energy sources, are expected to grow substantially in the coming decades and play a key role in mitigating climate change and achieving energy sustainability. One of the main challenges in optimizing the design, operation, control, and grid integration of wind farms is the prediction of their performance, owing to the complex multiscale two-way interactions between wind farms and the turbulent atmospheric boundary layer (ABL). From a fluid mechanical perspective, these interactions are complicated by the high Reynolds number of the ABL flow, its inherent unsteadiness due to the diurnal cycle and synoptic-forcing variability, the ubiquitous nature of thermal effects, and the heterogeneity of the terrain. Particularly important is the effect of ABL turbulence on wind-turbine wake flows and their superposition, as they are responsible for considerable turbine power losses and fatigue loads in wind farms. These flow interactions affect, in turn, the structure of the ABL and the turbulent fluxes of momentum and scalars. This review summarizes recent experimental, computational, and theoretical research efforts that have contributed to improving our understanding and ability to predict the interactions of ABL flow with wind turbines and wind farms.

443 citations

Journal ArticleDOI
TL;DR: The cumulative global capacity of organic Rankine cycle (ORC) power systems for the conversion of renewable and waste thermal energy is undergoing a rapid growth and is estimated to be approx. 2000 MWe considering only installations that went into operation after 1995 as mentioned in this paper.
Abstract: The cumulative global capacity of organic Rankine cycle (ORC) power systems for the conversion of renewable and waste thermal energy is undergoing a rapid growth and is estimated to be approx. 2000 MWe considering only installations that went into operation after 1995. The potential for the conversion of the thermal power coming from liquid-dominated geothermal reservoirs, waste heat from primary engines or industrial processes, biomass combustion, and concentrated solar radiation into electricity is arguably enormous. ORC technology is possibly the most flexible in terms of capacity and temperature level and is currently often the only applicable technology for the conversion of external thermal energy sources. In addition, ORC power systems are suitable for the cogeneration of heating and/or cooling, another advantage in the framework of distributed power generation. Related research and development is therefore very lively. These considerations motivated the effort documented in this article, aimed at providing consistent information about the evolution, state, and future of this power conversion technology. First, basic theoretical elements on the thermodynamic cycle, working fluid, and design aspects are illustrated, together with an evaluation of the advantages and disadvantages in comparison to competing technologies. An overview of the long history of the development of ORC power systems follows, in order to place the more recent evolution into perspective. Then, a compendium of the many aspects of the state of the art is illustrated: the solutions currently adopted in commercial plants and the main-stream applications, including information about exemplary installations. A classification and terminology for ORC power plants are proposed. An outlook on the many research and development activities is provided, whereby information on new high-impact applications, such as automotive heat recovery is included. Possible directions of future developments are highlighted, ranging from efforts targeting volume-produced stationary and mobile mini-ORC systems with a power output of few kWe, up to large MWe base-load ORC plants.

308 citations

Journal ArticleDOI
TL;DR: It is concluded that accurate routine prediction of secondary flow losses has not yet been achieved, and must await either a better turbulence model or more experiments to reveal new endwall loss production mechanisms.
Abstract: An important problem that arises in the design and the performance of axial flow turbines is the understanding, analysis, prediction and control of secondary flows. Sieverding1 has given a review of secondary flow literature, covering up to 1985. In this paper a brief review of pre-1985 work is given, and then a survey of open literature secondary flow investigations since the Sieverding review is presented. Most of the studies reviewed deal with plane or annular cascade flows. Tip clearance effects are not covered. The basic secondary flow picture for a turbine cascade, as measured and verified by a number of investigators is described. Recent work that shows refined secondary flow vortex structures is examined. A flow parameter based on inlet boundary layer properties used to predict horseshoe vortex swirl is presented. Work on secondary flow loss reduction, involving airfoil geometry, endwall fences and endwall contouring is briefly reviewed. A new leading edge bulb geometry that has demonstrated impressive loss reduction is considered. It is concluded that accurate routine prediction of secondary flow losses has not yet been achieved, and must await either a better turbulence model or more experiments to reveal new endwall loss production mechanisms. Lastly, loss is examined from the standpoint of entropy generation.

286 citations