scispace - formally typeset
Search or ask a question
Author

Vinod K. Singh

Bio: Vinod K. Singh is an academic researcher from Indian Institute of Technology Kanpur. The author has contributed to research in topics: Enantioselective synthesis & Michael reaction. The author has an hindex of 43, co-authored 220 publications receiving 6404 citations. Previous affiliations of Vinod K. Singh include Indian Institute of Science Education and Research, Bhopal & Indian Institute of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors described a new method for the catalytic enantioselective reduction of ketones to chiral secondary alcohols, where the stoichiometric reagent in the reduction is borane and the catalyst is a chiral oxazaborolidine such as 1 (0.05-0.1 molfmol of ketone).
Abstract: We have recently described a new method for the catalytic enantioselective reduction of ketones to chiral secondary alcohols.' The stoichiometric reagent in the reduction is borane (usually 0.6 molfmol of ketone), and the catalyst is a chiral oxazaborolidine such as 1 (0.05-0.1 molfmol of ketone). Excellent enantioselectivities, easy recoverability of the chiral catalyst predecessor, near quantitative yields, short reaction times (a few minutes at 23 \"C), and predictability of the absolute configuration of the product contribute to the outstanding utility of this (CBS') process. This paper reports several subsequent developments in this area with respect to improved practicality and important applications. In contrast to 1 which is both air and moisture sensitive, the B-methylated oxazaborolidine 2 can be stored in closed containers at room temperature and weighed or transferred in air. Catalyst 2 is also much more easily prepared than 1. Reaction of (S)-

773 citations

Journal ArticleDOI
TL;DR: This feature article has described reactions promoted by organocatalysts in a large excess of water, without any organic solvent or excess of any reactant.

268 citations

Journal ArticleDOI
TL;DR: It is demonstrated that small organic molecules 1 and 2 catalyzed the direct aldol reaction of both acyclic and cyclic ketones with different aldehydes in an excess of water/brine.

253 citations

Journal ArticleDOI
TL;DR: A copper(I) complex of i-Pr-pybox-diPh has been found to be an efficient catalyst for an enantioselective one-pot three-component synthesis of propargylamines from aldehydes, amines, and alkynes.

191 citations

Journal ArticleDOI
TL;DR: In this article, the recently developed oxazaborolidine catalyzed reduction along with other useful reagents are discussed and compared with other traditional reagents for the reduction of unsymmetrical ketones to optically active alcohols.
Abstract: Enantioselective reduction of unsymmetrical ketones to optically active alcohols is very important in organic synthesis. Catalytic methods have been developed for this process and have not been reviewed previously. In this article the recently developed oxazaborolidine catalyzed reduction along with other useful reagents will be discussed.

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this Review, the fundamental characteristics of azide chemistry and current developments are presented and the focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles.
Abstract: Since the discovery of organic azides by Peter Griess more than 140 years ago, numerous syntheses of these energy-rich molecules have been developed. In more recent times in particular, completely new perspectives have been developed for their use in peptide chemistry, combinatorial chemistry, and heterocyclic synthesis. Organic azides have assumed an important position at the interface between chemistry, biology, medicine, and materials science. In this Review, the fundamental characteristics of azide chemistry and current developments are presented. The focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles. Further reactions such as the aza-Wittig reaction, the Sundberg rearrangement, the Staudinger ligation, the Boyer and Boyer-Aube rearrangements, the Curtius rearrangement, the Schmidt rearrangement, and the Hemetsberger rearrangement bear witness to the versatility of modern azide chemistry.

1,766 citations

Journal ArticleDOI
TL;DR: The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center.
Abstract: Hydrogenation is a core technology in chemical synthesis. High rates and selectivities are attainable only by the coordination of structurally well-designed catalysts and suitable reaction conditions. The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center. This catalyst system allows for the preferential reduction of a C=O function over a coexisting C=C linkage in a 2-propanol solution containing an alkaline base. The hydrogenation tolerates many substituents including F, Cl, Br, I, CF(3), OCH(3), OCH(2)C(6)H(5), COOCH(CH(3))(2), NO(2), NH(2), and NRCOR as well as various electron-rich and -deficient heterocycles. Furthermore, stereoselectivity is easily controlled by the electronic and steric properties (bulkiness and chirality) of the ligands as well as the reaction conditions. Diastereoselectivities observed in the catalytic hydrogenation of cyclic and acyclic ketones with the standard triphenylphosphane/ethylenediamine combination compare well with the best conventional hydride reductions. The use of appropriate chiral diphosphanes, particularly BINAP compounds, and chiral diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic and heteroaromatic ketones and gives a consistently high enantioselectivity. Certain amino and alkoxy ketones can be used as substrates. Cyclic and acyclic alpha,beta-unsaturated ketones can be converted into chiral allyl alcohols of high enantiomeric purity. Hydrogenation of configurationally labile ketones allows for the dynamic kinetic discrimination of diastereomers, epimers, and enantiomers. This new method shows promise in the practical synthesis of a wide variety of chiral alcohols from achiral and chiral ketone substrates. Its versatility is manifested by the asymmetric synthesis of some biologically significant chiral compounds. The high rate and carbonyl selectivity are based on nonclassical metal-ligand bifunctional catalysis involving an 18-electron amino ruthenium hydride complex and a 16-electron amido ruthenium species.

1,630 citations