scispace - formally typeset
Search or ask a question
Author

Vinod Labhasetwar

Bio: Vinod Labhasetwar is an academic researcher from Cleveland Clinic Lerner Research Institute. The author has contributed to research in topics: Drug delivery & Drug carrier. The author has an hindex of 61, co-authored 158 publications receiving 21673 citations. Previous affiliations of Vinod Labhasetwar include University of Michigan & University of Nebraska Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed.

3,269 citations

Journal ArticleDOI
TL;DR: This review considers different nanotechnology-based drug delivery and imaging approaches, and their economic impact on pharmaceutical and biomedical industries.

1,058 citations

Journal ArticleDOI
TL;DR: The mechanism of rapid escape is by selective reversal of the surface charge of NPs (from anionic to cationic) in the acidic endolysosomal compartment, which causes the NPs to interact with the endo‐lysosomal membrane and escape into the cytosol.
Abstract: The endo-lysosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially the payloads that are susceptible to lysosomal degradation. Current vectors that enable the endo-lysosomal escape of macromolecules such as DNA are limited by their toxicity and by their ability to carry only limited classes of therapeutic agents. In this paper, we report the rapid (<10 min) endo-lysosomal escape of biodegradable nanoparticles (NPs) formulated from the copolymers of poly(DL-lactide-co-glycolide) (PLGA). The mechanism of rapid escape is by selective reversal of the surface charge of NPs (from anionic to cationic) in the acidic endo-lysosomal compartment, which causes the NPs to interact with the endo-lysosomal membrane and escape into the cytosol. PLGA NPs are able to deliver a variety of therapeutic agents, including macromolecules such as DNA and low molecular weight drugs such as dexamethasone, intracellularly at a slow rate, which results in a sustained therapeutic effect. PLGA has a number of advantages over other polymers used in drug and gene delivery including biodegradability, biocompatibility, and approval for human use granted by the U.S. Food and Drug Administration. Hence PLGA is well suited for sustained intracellular delivery of macromolecules.

1,031 citations

Journal ArticleDOI
TL;DR: There is a microparticle size dependent exclusion phenomena in the gastrointestinal mucosal tissue with 100 nm size particles showing significantly greater tissue uptake, which has important implications in designing of nanoparticle-based oral drug delivery systems, such as an oral vaccine system.
Abstract: Purpose. To investigate the effect of microparticle size on gastrointestinal tissue uptake.

936 citations

Journal ArticleDOI
TL;DR: The residual PVA associated with nanoparticles is an important formulation parameter that can be used to modulate the pharmaceutical properties of PLGA nanoparticles.

915 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations

Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Journal ArticleDOI
TL;DR: The intracellular uptake of different sized and shaped colloidal gold nanoparticles is investigated and it is shown that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles.
Abstract: We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study will have implications in the chemical design of nanostructures for biomedical applications (e.g., tuning intracellular delivery rates and amounts by nanoscale dimensions and engineering complex, multifunctional nanostructures for imaging and therapeutics).

4,383 citations

Journal ArticleDOI
TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract: Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

3,975 citations