scispace - formally typeset
Search or ask a question
Author

Vinothan N. Manoharan

Bio: Vinothan N. Manoharan is an academic researcher from Harvard University. The author has contributed to research in topics: Particle & Scattering. The author has an hindex of 45, co-authored 132 publications receiving 9330 citations. Previous affiliations of Vinothan N. Manoharan include Indian Institute of Technology, Jodhpur & University of California.


Papers
More filters
Journal ArticleDOI
28 May 2010-Science
TL;DR: It is shown that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures, and plasmon modes exhibiting strong magnetic and Fano-like resonances emerge.
Abstract: The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.

1,402 citations

Journal ArticleDOI
25 Jul 2003-Science
TL;DR: The emulsion system presents a route to produce new colloidal structures and a means to study how different physical constraints affect symmetry in small parcels of matter.
Abstract: When small numbers of colloidal microspheres are attached to the surfaces of liquid emulsion droplets, removing fluid from the droplets leads to packings of spheres that minimize the second moment of the mass distribution. The structures of the packings range from sphere doublets, triangles, and tetrahedra to exotic polyhedra not found in infinite lattice packings, molecules, or minimum-potential energy clusters. The emulsion system presents a route to produce new colloidal structures and a means to study how different physical constraints affect symmetry in small parcels of matter.

988 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: This work demonstrates a general method for creating the colloidal analogues of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp 3d, sp4d2 and sp3d3.
Abstract: The ability to design and assemble three-dimensional structures from colloidal particles is limited by the absence of specific directional bonds. As a result, complex or low-coordination structures, common in atomic and molecular systems, are rare in the colloidal domain. Here we demonstrate a general method for creating the colloidal analogues of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp3d, sp3d2 and sp3d3. Functionalized with DNA with single-stranded sticky ends, patches on different particles can form highly directional bonds through programmable, specific and reversible DNA hybridization. These features allow the particles to self-assemble into ‘colloidal molecules’ with triangular, tetrahedral and other bonding symmetries, and should also give access to a rich variety of new microstructured colloidal materials. A general method of creating colloidal particles that can self-assemble into ‘colloidal molecules’ is described: surface patches with well-defined symmetries are functionalized using DNA with single-stranded sticky ends and imitate hybridized atomic orbitals to form highly directional bonds. Chemists routinely use atoms that can form directional bonds to assemble complex and useful molecular structures. But larger colloidal particles have proved less conducive to rational assembly because they lack specific directional bonds. David Pine and colleagues now report a way around this problem that could lead to the creation of a rich variety of new micro-structured colloidal materials with technologically useful properties. Using microsphere clusters as intermediates, they create colloidal particles with chemically distinct and precisely located 'sticky patches' on the surface — up to 7 per particle — that enable specific and highly directional bonding. Using this system, they assemble 'colloidal molecules' exhibiting a wide range of bonding symmetries.

954 citations

Journal ArticleDOI
28 Aug 2015-Science
TL;DR: The wide range of self-assembled structures seen in colloidal matter can be understood in terms of the interplay between packing constraints, interactions, and the freedom of the particles to move—in other words, their entropy.
Abstract: BACKGROUND Colloids consist of solid or liquid particles, each about a few hundred nanometers in size, dispersed in a fluid and kept suspended by thermal fluctuations. Whereas natural colloids are the stuff of paint, milk, and glue, synthetic colloids with well-controlled size distributions and interactions are a model system for understanding phase transitions. These colloids can form crystals and other phases of matter seen in atomic and molecular systems, but because the particles are large enough to be seen under an optical microscope, the microscopic mechanisms of phase transitions can be directly observed. Furthermore, their ability to spontaneously form phases that are ordered on the scale of visible wavelengths makes colloids useful building blocks for optical materials such as photonic crystals. Because the interactions between particles can be altered and the effects on structure directly observed, experiments on colloids offer a controlled approach toward understanding and harnessing self-assembly, a fundamental topic in materials science, condensed-matter physics, and biophysics. ADVANCES In the past decade, our understanding of colloidal self-assembly has been transformed by experiments and simulations that subject colloids to geometrical or topological constraints, such as curved surfaces, fields, or the shapes of the particles themselves. In particular, advances in the synthesis of nonspherical particles with controlled shape and directional interactions have led to the discovery of structural transitions that do not occur in atoms or molecules. As a result, colloids are no longer seen as a proxy for atomic systems but as a form of matter in their own right. The wide range of self-assembled structures seen in colloidal matter can be understood in terms of the interplay between packing constraints, interactions, and the freedom of the particles to move—in other words, their entropy. Ongoing research attempts to use geometry and entropy to explain not only structure but dynamics as well. Central to this goal is the question of how entropy favors certain local packings. The incompatibility of these locally favored structures with the globally favored packing can be linked to the assembly of disordered, arrested structures such as gels and glasses. OUTLOOK We are just beginning to explore the collective effects that are possible in colloidal matter. The experimentalist can now control interactions, shapes, and confinement, and this vast parameter space is still expanding. Active colloidal systems, dispersions of particles driven by intrinsic or extrinsic energy sources rather than thermal fluctuations, can show nonequilibrium self-organization with a complexity rivaling that of biological systems. We can also expect new structural transitions to emerge in “polygamous” DNA-functionalized colloids, which have no equivalent at the molecular scale. New frameworks are needed to predict how all of these variables—confinement, activity, and specific interactions—interact with packing constraints to govern both structure and dynamics. Such frameworks would not only reveal general principles of self-assembly but would also allow us to design colloidal particles that pack in prescribed ways, both locally and globally, thereby enabling the robust self-assembly of optical materials.

422 citations

Journal ArticleDOI
TL;DR: It is demonstrated that clusters of four identical spherical particles self-assembled into a close-packed asymmetric quadrumer support strong Fano-like interference.
Abstract: Assemblies of strongly interacting metallic nanoparticles are the basis for plasmonic nanostructure engineering. We demonstrate that clusters of four identical spherical particles self-assembled into a close-packed asymmetric quadrumer support strong Fano-like interference. This feature is highly sensitive to the polarization of the incident electric field due to orientation-dependent coupling between particles in the cluster. This structure demonstrates how careful design of self-assembled colloidal systems can lead to the creation of new plasmonic modes and the enabling of interference effects in plasmonic systems.

346 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
21 Oct 2011-Science
TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Abstract: Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

6,763 citations

Journal ArticleDOI
TL;DR: The rapid diffusion of nitric oxide between cells allows it to locally integrate the responses of blood vessels to turbulence, modulate synaptic plasticity in neurons, and control the oscillatory behavior of neuronal networks.
Abstract: Nitric oxide contrasts with most intercellular messengers because it diffuses rapidly and isotropically through most tissues with little reaction but cannot be transported through the vasculature due to rapid destruction by oxyhemoglobin. The rapid diffusion of nitric oxide between cells allows it to locally integrate the responses of blood vessels to turbulence, modulate synaptic plasticity in neurons, and control the oscillatory behavior of neuronal networks. Nitric oxide is not necessarily short lived and is intrinsically no more reactive than oxygen. The reactivity of nitric oxide per se has been greatly overestimated in vitro because no drain is provided to remove nitric oxide. Nitric oxide persists in solution for several minutes in micromolar concentrations before it reacts with oxygen to form much stronger oxidants like nitrogen dioxide. Nitric oxide is removed within seconds in vivo by diffusion over 100 microns through tissues to enter red blood cells and react with oxyhemoglobin. The direct toxicity of nitric oxide is modest but is greatly enhanced by reacting with superoxide to form peroxynitrite (ONOO-). Nitric oxide is the only biological molecule produced in high enough concentrations to out-compete superoxide dismutase for superoxide. Peroxynitrite reacts relatively slowly with most biological molecules, making peroxynitrite a selective oxidant. Peroxynitrite modifies tyrosine in proteins to create nitrotyrosines, leaving a footprint detectable in vivo. Nitration of structural proteins, including neurofilaments and actin, can disrupt filament assembly with major pathological consequences. Antibodies to nitrotyrosine have revealed nitration in human atherosclerosis, myocardial ischemia, septic and distressed lung, inflammatory bowel disease, and amyotrophic lateral sclerosis.

5,370 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations