scispace - formally typeset
Search or ask a question
Author

Viola Nolte

Bio: Viola Nolte is an academic researcher from University of Vienna. The author has contributed to research in topics: Population & Experimental evolution. The author has an hindex of 29, co-authored 67 publications receiving 3652 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review demonstrates the breadth of questions that are being addressed by Pool-seq but also discusses its limitations and provides guidelines for users.
Abstract: The analysis of polymorphism data is becoming increasingly important as a complementary tool to classical genetic analyses. Nevertheless, despite plunging sequencing costs, genomic sequencing of individuals at the population scale is still restricted to a few model species. Whole-genome sequencing of pools of individuals (Pool-seq) provides a cost-effective alternative to sequencing individuals separately. With the availability of custom-tailored software tools, Pool-seq is being increasingly used for population genomic research on both model and non-model organisms. In this Review, we not only demonstrate the breadth of questions that are being addressed by Pool-seq but also discuss its limitations and provide guidelines for users.

642 citations

Journal ArticleDOI
06 Jan 2011-PLOS ONE
TL;DR: PoPoolation calculates estimates of θ Watterson, θ π, and Tajima's D that account for the bias introduced by pooling and sequencing errors, as well as divergence between species.
Abstract: Recent statistical analyses suggest that sequencing of pooled samples provides a cost effective approach to determine genome-wide population genetic parameters. Here we introduce PoPoolation, a toolbox specifically designed for the population genetic analysis of sequence data from pooled individuals. PoPoolation calculates estimates of θWatterson, θπ, and Tajima's D that account for the bias introduced by pooling and sequencing errors, as well as divergence between species. Results of genome-wide analyses can be graphically displayed in a sliding window plot. PoPoolation is written in Perl and R and it builds on commonly used data formats. Its source code can be downloaded from http://code.google.com/p/popoolation/. Furthermore, we evaluate the influence of mapping algorithms, sequencing errors, and read coverage on the accuracy of population genetic parameter estimates from pooled data.

544 citations

Journal ArticleDOI
TL;DR: This report studied the diversity and the seasonal community turnover of alveolates in an oligotrophic freshwater lake by SSU amplicon sequencing with NGS as well as by classical morphological analysis, and proposes that rDNA‐based diversity studies need to be adjusted for confounding effects of copy number variation.
Abstract: With the delivery of millions of sequence reads in a single experiment, next-generation sequencing (NGS) is currently revolutionizing surveys of microorganism diversity. In particular, when applied to Eukaryotes, we are still lacking a rigorous comparison of morphological and NGS-based diversity estimates. In this report, we studied the diversity and the seasonal community turnover of alveolates (Ciliophora and Dinophyceae) in an oligotrophic freshwater lake by SSU amplicon sequencing with NGS as well as by classical morphological analysis. We complemented the morphological analysis by single-cell PCR followed by Sanger sequencing to provide an unambiguous link to the NGS data. We show that NGS and morphological analyses generally capture frequency shifts of abundant taxa over our seasonal samples. The observed incongruencies are probably largely due to rDNA copy number variation among taxa and heterogeneity in the efficiency of cell lysis. Overall, NGS-based amplicon sequencing was superior in detecting rare species. We propose that in the absence of other nuclear markers less susceptible to copy number variation, rDNA-based diversity studies need to be adjusted for confounding effects of copy number variation.

327 citations

Journal ArticleDOI
TL;DR: Drosophila melanogaster populations collected along the North American east coast are compared to find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways.
Abstract: Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here, we use genome-wide next-generation sequencing of DNA pools ('pool-seq') from three populations collected along the North American east coast to examine patterns of latitudinal differentiation. Comparing the genomes of these populations is particularly interesting since they exhibit clinal variation in a number of important life history traits. We find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways. We observe particularly strong differentiation on chromosome 3R, especially within the cosmopolitan inversion In(3R)Payne, which contains a large number of clinally varying genes. While much of the differentiation might be driven by clinal differences in the frequency of In(3R)P, we also identify genes that are likely independent of this inversion. Our results provide genome-wide evidence consistent with pervasive spatially variable selection acting on numerous loci and pathways along the well-known North American cline, with many candidates implicated in life history regulation and exhibiting parallel differentiation along the previously investigated Australian cline.

259 citations

Journal ArticleDOI
TL;DR: This work exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles, and discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates.
Abstract: The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic—i.e., result from selection on a large number of genetic loci—but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes—e.g., fitness, metabolic rate, and fat content—and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.

192 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.
Abstract: Massively parallel short-read sequencing technologies, coupled with powerful software platforms, are enabling investigators to analyse tens of thousands of genetic markers. This wealth of data is rapidly expanding and allowing biological questions to be addressed with unprecedented scope and precision. The sizes of the data sets are now posing significant data processing and analysis challenges. Here we describe an extension of the Stacks software package to efficiently use genotype-by-sequencing data for studies of populations of organisms. Stacks now produces core population genomic summary statistics and SNP-by-SNP statistical tests. These statistics can be analysed across a reference genome using a smoothed sliding window. Stacks also now provides several output formats for several commonly used downstream analysis packages. The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.

2,958 citations

Journal ArticleDOI
01 Feb 2012-PLOS ONE
TL;DR: The toolkit is comprised of user-friendly tools for QC of sequencing data generated using Roche 454 and Illumina platforms, and additional tools to aid QC (sequence format converter and trimming tools) and analysis and analysis (statistics tools).
Abstract: Next generation sequencing (NGS) technologies provide a high-throughput means to generate large amount of sequence data. However, quality control (QC) of sequence data generated from these technologies is extremely important for meaningful downstream analysis. Further, highly efficient and fast processing tools are required to handle the large volume of datasets. Here, we have developed an application, NGS QC Toolkit, for quality check and filtering of high-quality data. This toolkit is a standalone and open source application freely available at http://www.nipgr.res.in/ngsqctoolkit.html. All the tools in the application have been implemented in Perl programming language. The toolkit is comprised of user-friendly tools for QC of sequencing data generated using Roche 454 and Illumina platforms, and additional tools to aid QC (sequence format converter and trimming tools) and analysis (statistics tools). A variety of options have been provided to facilitate the QC at user-defined parameters. The toolkit is expected to be very useful for the QC of NGS data to facilitate better downstream analysis.

2,387 citations

Journal ArticleDOI
TL;DR: Best practices for several NGS methods for genome-wide genetic marker development and genotyping that use restriction enzyme digestion of target genomes to reduce the complexity of the target.
Abstract: The authors describe the best practices for a growing number of methods that use next-generation sequencing to rapidly discover and assess genetic markers across any genome, with applications from population genomics and quantitative trait locus mapping to marker-assisted selection.

2,231 citations