scispace - formally typeset
Search or ask a question
Author

Violetta Naughton

Bio: Violetta Naughton is an academic researcher from Ulster University. The author has contributed to research in topics: Pancreatic juice & Pancreatic duct. The author has an hindex of 7, co-authored 26 publications receiving 200 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications are focused on.
Abstract: Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.

190 citations

Journal ArticleDOI
11 Jan 2020-Peptides
TL;DR: Observations suggest that GIP and other gut hormones may provide a novel therapeutic approach for PCOS and other reproductive disorders.

24 citations

Journal ArticleDOI
TL;DR: The microbiota-associated metabolic and compositional changes noted provide initial indication of putative beneficial health benefits of L.digitata in vitro; however, research is needed to clarify if L. digitata-derived fiber can favorably alter the gut microbiota and confer health benefits in vivo.
Abstract: Brown seaweeds are known to be a rich source of fiber with the presence of several non-digestible polysaccharides including laminarin, fucoidan and alginate. These individual polysaccharides have previously been shown to favorably alter the gut microbiota composition and activity albeit the effect of the collective brown seaweed fiber component on the microbiota remains to be determined. This study investigated the effect of a crude polysaccharide-rich extract obtained from Laminaria digitata (CE) and a depolymerized CE extract (DE) on the gut microbiota composition and metabolism using an in vitro fecal batch culture model though metagenomic compositional analysis using 16S rRNA FLX amplicon pyrosequencing and short-chain fatty acid (SCFA) analysis using GC-FID. Selective culture analysis showed no significant changes in cultured lactobacilli or bifidobacteria between the CE or DE and the cellulose-negative control at any time point measured (0, 5, 10, 24, 36, 48 h). Following metagenomic analysis, the CE and DE significantly altered the relative abundance of several families including Lachnospiraceae and genera including Streptococcus, Ruminococcus and Parabacteroides of human fecal bacterial populations in comparison to cellulose after 24 h. The concentrations of acetic acid, propionic acid, butyric acid and total SCFA were significantly higher for both the CE and DE compared to cellulose after 10, 24, 36 and 48 h fermentation (p < 0.05). Furthermore, the acetate:propionate ratio was significantly reduced (p < 0.05) for both CD and DE following 24, 36 and 48 h fermentation. The microbiota-associated metabolic and compositional changes noted provide initial indication of putative beneficial health benefits of L. digitata in vitro; however, research is needed to clarify if L. digitata-derived fiber can favorably alter the gut microbiota and confer health benefits in vivo.

22 citations

Journal ArticleDOI
TL;DR: The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.

18 citations

Journal ArticleDOI
TL;DR: Increased concentrations of sulphur amino acids during Bet infusion could indicate that labile methyl groups may be limited in calves, and postruminal Bet and Chol supplementation may cause a decrease in nutrient absorption in the small intestine by increasing digesta transport.
Abstract: Four, 4-week old Friesian calves (BW = 50 +/- 3 kg), fitted with duodenal, portal and jugular catheters and duodenal electrodes, were used to study the metabolism of duodenally infused betaine (Bet) or choline (Chol) and their effects on blood sulphur amino acids and duodenal myoelectrical migrating complexes (MMC). Animals were fed milk replacer at 5 % BW twice daily, but were starved overnight prior to the experimental procedure. Animals received a saline infusion for 2 h at l ml/min followed by a 1 h infusion of 1.2 or 3.6 mmol of either Bet or Chol. Infusion of saline was continued for another 2 h after the cessation of the amino acid infusion. Duodenal MMC were measured with a computer-based data acquisition system (MacLab, ADI, Australia). There were no differences in measured blood metabolites between the jugular and portal vein; therefore, only average values were presented. Plasma Met concentrations increased from 20 mu M, 20 min after initiating Bet infusion, whereas a lower dose of Chol decreased plasma Met and a higher one had no effect. The highest plasma methionine (Met) concentration (29 mu M) occurred 45 min after the onset of the Bet infusion (1.2 mmol). Compared to the 3.6 mmol Bet infusion, the intraduodenal infusion of 1 2 mmol of Bet resulted in a greater area (P < 0.001) under the plasma Met concentration curve (281.6 v. 73.3 mmol). A similar pattern was observed for plasma cystine concentrations. Infusion of Bet or Chol did not change the duration of MMC but Bet increased the number of spikes during the phase of low spiking activity (37.5 v. 14.6 pre-infusion, spikes/min; P < 0.01). Chol had the same effect but only after the infusion ceased (29.3 v. 11.5 spikes/min; P < 0.01). The velocity of migration of regular spiking activity (RSA; related to digesta transport) increased as a result of infusion (16.4 pre-infusion v. 31.3 Bet, 25.2 Chol cm/min; P < 0.01). Chol caused an immediate increase in the velocity of migration of RSA, whereas with the Bet infusion an increase was observed after cessation of infusion. Increased concentrations of sulphur amino acids during Bet infusion could indicate that labile methyl groups may be limited in calves. Postruminal Bet and Chol supplementation may cause a decrease in nutrient absorption in the small intestine by increasing digesta transport.

15 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: There is growing evidence that betaine could have a positive impact both on animal performance and carcass quality, and direct interactions of betaine with metabolism-regulating factors have to be considered.
Abstract: The present review summarises the potential nutritional and physiological functions of betaine as a feed additive in relation to performance criteria in livestock production. Betaine, the trimethyl derivative of the amino acid glycine, is a metabolite of plant and animal tissues. In plants, betaine is particularly synthesised and accumulated as an osmoprotectant against salt and temperature stress. In animals, betaine is the product of choline oxidation or it originates from nutritional sources. Over the past decades, numerous studies have been carried out to investigate the potential effects of betaine supplementation on animal performance. Due to its chemical structure, betaine shows the characteristics of a dipolar zwitterion resulting in osmoprotective properties. Promoting effects on the intestinal tract against osmotic stress occurring during diarrhoea or coccidiosis have been reported following betaine supplementation in pigs and poultry. There is also some evidence that dietary betaine may improve the digestibility of specific nutrients. As a product of choline oxidation, betaine is involved in transmethylation reactions of the organism. Betaine as a methyl donor provides its labile methyl groups for the synthesis of several metabolically active substances such as creatine and carnitine. Supplementation with betaine may decrease the requirement for other methyl donors such as methionine and choline. There is also some evidence for enhanced methionine availability after dietary supplementation of betaine resulting in improved animal performance. Alterations in the distribution pattern of protein and fat in the body have been reported following betaine supplementation. A more efficient use of dietary protein may result from a methionine-sparing effect of betaine, but also direct interactions of betaine with metabolism-regulating factors have to be considered. Though the mode of action of betaine as a carcass modifier remains open, there is, however, growing evidence that betaine could have a positive impact both on animal performance and carcass quality.

334 citations

Journal ArticleDOI
TL;DR: This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior and describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurFactant-containing solutions and dispersions.

241 citations

Journal ArticleDOI
TL;DR: The theoretical framework for the resistome concept is revisited and the many factors that influence the evolution of novel resistance genes, the spread of mobile resistance elements, and the ramifications of these processes for clinical practice are considered.

147 citations

Journal ArticleDOI
TL;DR: Inquiries are provided for the development of lactobacilli derivatives as a complementary or alternative medicine to conventional probiotic therapy in vaginal health and the current challenges in the implementation of the use of lacto-based remedies for vaginal infections.
Abstract: Human vagina is colonised by a diverse array of microorganisms that make up the normal microbiota and mycobiota. Lactobacillus is the most frequently isolated microorganism from the healthy human vagina, this includes Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii. These vaginal lactobacilli have been touted to prevent invasion of pathogens by keeping their population in check. However, the disruption of vaginal ecosystem contributes to the overgrowth of pathogens which causes complicated vaginal infections such as bacterial vaginosis (BV), sexually transmitted infections (STIs), and vulvovaginal candidiasis (VVC). Predisposing factors such as menses, pregnancy, sexual practice, uncontrolled usage of antibiotics, and vaginal douching can alter the microbial community. Therefore, the composition of vaginal microbiota serves an important role in determining vagina health. Owing to their Generally Recognised as Safe (GRAS) status, lactobacilli have been widely utilised as one of the alternatives besides conventional antimicrobial treatment against vaginal pathogens for the prevention of chronic vaginitis and the restoration of vaginal ecosystem. In addition, the effectiveness of Lactobacillus as prophylaxis has also been well-founded in long-term administration. This review aimed to highlight the beneficial effects of lactobacilli derivatives (i.e. surface-active molecules) with anti-biofilm, antioxidant, pathogen-inhibition, and immunomodulation activities in developing remedies for vaginal infections. We also discuss the current challenges in the implementation of the use of lactobacilli derivatives in promotion of human health. In the current review, we intend to provide insights for the development of lactobacilli derivatives as a complementary or alternative medicine to conventional probiotic therapy in vaginal health.

145 citations