scispace - formally typeset
Search or ask a question
Author

Violetta Sessi

Bio: Violetta Sessi is an academic researcher from European Synchrotron Radiation Facility. The author has contributed to research in topics: Magnetic circular dichroism & Magnetic anisotropy. The author has an hindex of 22, co-authored 46 publications receiving 1583 citations. Previous affiliations of Violetta Sessi include Max Planck Society & Karlsruhe Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO 3 and LaAlO3, and in both cases the magnetism can be stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments.
Abstract: Possible ferromagnetism induced in otherwise nonmagnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetism can be stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated with magnetic Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetism is quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in this phenomenon.

174 citations

Journal ArticleDOI
TL;DR: Contrary to paramagnetic molecules pinned to a ferromagnetic support layer, it is found that TbPc(2) can be magnetized parallel or antiparallel to the substrate, opening the possibility to exploit SMMs in spin valve devices.
Abstract: We investigate the interaction of TbPc2 single molecule magnets (SMMs) with ferromagnetic Ni substrates. Using element-resolved x-ray magnetic circular dichroism, we show that TbPc2 couples antiferromagnetically to Ni films through ligand-mediated superexchange. This coupling is strongly anisotropic and can be manipulated by doping the interface with electron acceptor or donor atoms. We observe that the relative orientation of the substrate and molecule anisotropy axes critically affects the SMM magnetic behavior. TbPc2 complexes deposited on perpendicularly magnetized Ni films exhibit enhanced magnetic remanence compared to SMMs in the bulk. Contrary to paramagnetic molecules pinned to a ferromagnetic support layer, we find that TbPc2 can be magnetized parallel or antiparallel to the substrate, opening the possibility to exploit SMMs in spin valve devices.

155 citations

Journal ArticleDOI
TL;DR: The magnetic properties of isolated TbPc(2) molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism at 8 K in magnetic fields up to 5 T.
Abstract: The magnetic properties of isolated TbPc2 molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism a t8Ki nmagnetic fields up to 5 T. The crystal field and magnetic properties of single molecules are found to be robust upon adsorption on a metal substrate. The Tb magnetic moment has Ising-like magnetization; XMCD spectra combined with multiplet calculations show that the saturation orbital and spin magnetic moment values reach 3 and 6 µB, respectively.

151 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an in-plane easy axis arises from the combination of the crystal field and dynamic hybridization effects within the surface plane, contrary to what was assumed in recent investigations on the supposed opening of a gap.
Abstract: The robustness of the gapless topological surface state hosted by a 3D topological insulator against perturbations of magnetic origin has been the focus of recent investigations. We present a comprehensive study of the magnetic properties of Fe impurities on the prototypical 3D topological insulator Bi2Se3 using local low-temperature scanning tunneling spectroscopy and integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the Bi2Se3 surface, in the coverage range approximate to 1% of a monolayer, are heavily relaxed into the surface and exhibit a magnetic easy axis within the surface plane, contrary to what was assumed in recent investigations on the supposed opening of a gap. Using ab initio approaches, we demonstrate that an in-plane easy axis arises from the combination of the crystal field and dynamic hybridization effects.

120 citations

Journal ArticleDOI
TL;DR: This work investigates the magnetic coupling of Ni centers embedded in two-dimensional metal-coordination networks self-assembled from 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on Ag(100) and Au(111) surfaces and suggests a superexchange coupling mechanism via the TCNQ ligands.
Abstract: We investigate the magnetic coupling of Ni centers embedded in two-dimensional metal-coordination networks self-assembled from 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on Ag(100) and Au(111) surfaces. X-ray magnetic circular dichroism measurements show that single Ni adatom impurities assume a spin-quenched configuration on both surfaces, while Ni atoms coordinating to TCNQ ligands recover their magnetic moment and exhibit ferromagnetic coupling. The valence state and the ferromagnetic coupling strength of the Ni coordination centers depend crucially on the underlying substrate due to the different charge state of the TCNQ ligands on the two surfaces. The results suggest a superexchange coupling mechanism via the TCNQ ligands.

89 citations


Cited by
More filters
Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
TL;DR: In this paper, the authors acknowledge support from the EU FET Open RIA Grant No 766566, the Ministry of Education of the Czech Republic Grant No LM2015087 and LNSM-LNSpin.
Abstract: A M was supported by the King Abdullah University of Science and Technology (KAUST) T J acknowledges support from the EU FET Open RIA Grant No 766566, the Ministry of Education of the Czech Republic Grant No LM2015087 and LNSM-LNSpin, and the Grant Agency of the Czech Republic Grant No 19-28375X J S acknowledges the Alexander von Humboldt Foundation, EU FET Open Grant No 766566, EU ERC Synergy Grant No 610115, and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X K G and P G acknowledge stimulating discussions with C O Avci and financial support by the Swiss National Science Foundation (Grants No 200021-153404 and No 200020-172775) and the European Commission under the Seventh Framework Program (spOt project, Grant No 318144) A T acknowledges support by the Agence Nationale de la Recherche, Project No ANR-17-CE24-0025 (TopSky) J Ž acknowledges the Grant Agency of the Czech Republic Grant No 19-18623Y and support from the Institute of Physics of the Czech Academy of Sciences and the Max Planck Society through the Max Planck Partner Group programme

863 citations

Journal ArticleDOI
TL;DR: The structural basics, spectroscopic signatures, and physical properties of the 2D BN nanostructures are discussed and various top-down and bottom-up preparation methodologies are reviewed in detail.
Abstract: The recent surge in graphene research has stimulated interest in the investigation of various 2-dimensional (2D) nanomaterials. Among these materials, the 2D boron nitride (BN) nanostructures are in a unique position. This is because they are the isoelectric analogs to graphene structures and share very similar structural characteristics and many physical properties except for the large band gap. The main forms of the 2D BN nanostructures include nanosheets (BNNSs), nanoribbons (BNNRs), and nanomeshes (BNNMs). BNNRs are essentially BNNSs with narrow widths in which the edge effects become significant; BNNMs are also variations of BNNSs, which are supported on certain metal substrates where strong interactions and the lattice mismatch between the substrate and the nanosheet result in periodic shallow regions on the nanosheet surface. Recently, the hybrids of 2D BN nanostructures with graphene, in the form of either in-plane hybrids or inter-plane heterolayers, have also drawn much attention. In particular, the BNNS–graphene heterolayer architectures are finding important electronic applications as BNNSs may serve as excellent dielectric substrates or separation layers for graphene electronic devices. In this article, we first discuss the structural basics, spectroscopic signatures, and physical properties of the 2D BN nanostructures. Then, various top-down and bottom-up preparation methodologies are reviewed in detail. Several sections are dedicated to the preparation of BNNRs, BNNMs, and BNNS–graphene hybrids, respectively. Following some more discussions on the applications of these unique materials, the article is concluded with a summary and perspectives of this exciting new field.

764 citations