scispace - formally typeset

Author

Vipin Kumar

Bio: Vipin Kumar is an academic researcher from University of Minnesota. The author has contributed to research in topic(s): Parallel algorithm & Cluster analysis. The author has an hindex of 95, co-authored 614 publication(s) receiving 59034 citation(s). Previous affiliations of Vipin Kumar include University of Maryland, College Park & United States Department of the Army.
Papers
More filters

Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

7,894 citations


Journal ArticleDOI
TL;DR: This work presents a new coarsening heuristic (called heavy-edge heuristic) for which the size of the partition of the coarse graph is within a small factor of theSize of the final partition obtained after multilevel refinement, and presents a much faster variation of the Kernighan--Lin (KL) algorithm for refining during uncoarsening.
Abstract: Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. of the 6th SIAM Conference on Parallel Processing for Scientific Computing, 1993, 445--452; Hendrickson and Leland, A Multilevel Algorithm for Partitioning Graphs, Tech. report SAND 93-1301, Sandia National Laboratories, Albuquerque, NM, 1993]. From the early work it was clear that multilevel techniques held great promise; however, it was not known if they can be made to consistently produce high quality partitions for graphs arising in a wide range of application domains. We investigate the effectiveness of many different choices for all three phases: coarsening, partition of the coarsest graph, and refinement. In particular, we present a new coarsening heuristic (called heavy-edge heuristic) for which the size of the partition of the coarse graph is within a small factor of the size of the final partition obtained after multilevel refinement. We also present a much faster variation of the Kernighan--Lin (KL) algorithm for refining during uncoarsening. We test our scheme on a large number of graphs arising in various domains including finite element methods, linear programming, VLSI, and transportation. Our experiments show that our scheme produces partitions that are consistently better than those produced by spectral partitioning schemes in substantially smaller time. Also, when our scheme is used to compute fill-reducing orderings for sparse matrices, it produces orderings that have substantially smaller fill than the widely used multiple minimum degree algorithm.

5,117 citations


Journal ArticleDOI
Xindong Wu1, Vipin Kumar2, J. Ross Quinlan, Joydeep Ghosh3  +10 moreInstitutions (12)
TL;DR: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
Abstract: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification, clustering, statistical learning, association analysis, and link mining, which are all among the most important topics in data mining research and development.

4,268 citations


23 May 2000
TL;DR: This paper compares the two main approaches to document clustering, agglomerative hierarchical clustering and K-means, and indicates that the bisecting K-MEans technique is better than the standard K-Means approach and as good or better as the hierarchical approaches that were tested for a variety of cluster evaluation metrics.
Abstract: This paper presents the results of an experimental study of some common document clustering techniques. In particular, we compare the two main approaches to document clustering, agglomerative hierarchical clustering and K-means. (For K-means we used a “standard” K-means algorithm and a variant of K-means, “bisecting” K-means.) Hierarchical clustering is often portrayed as the better quality clustering approach, but is limited because of its quadratic time complexity. In contrast, K-means and its variants have a time complexity which is linear in the number of documents, but are thought to produce inferior clusters. Sometimes K-means and agglomerative hierarchical approaches are combined so as to “get the best of both worlds.” However, our results indicate that the bisecting K-means technique is better than the standard K-means approach and as good or better than the hierarchical approaches that we tested for a variety of cluster evaluation metrics. We propose an explanation for these results that is based on an analysis of the specifics of the clustering algorithms and the nature of document

2,838 citations


Journal ArticleDOI
George Karypis1, Eui-Hong Han1, Vipin Kumar1Institutions (1)
TL;DR: Chameleon's key feature is that it accounts for both interconnectivity and closeness in identifying the most similar pair of clusters, which is important for dealing with highly variable clusters.
Abstract: Clustering is a discovery process in data mining. It groups a set of data in a way that maximizes the similarity within clusters and minimizes the similarity between two different clusters. Many advanced algorithms have difficulty dealing with highly variable clusters that do not follow a preconceived model. By basing its selections on both interconnectivity and closeness, the Chameleon algorithm yields accurate results for these highly variable clusters. Existing algorithms use a static model of the clusters and do not use information about the nature of individual clusters as they are merged. Furthermore, one set of schemes (the CURE algorithm and related schemes) ignores the information about the aggregate interconnectivity of items in two clusters. Another set of schemes (the Rock algorithm, group averaging method, and related schemes) ignores information about the closeness of two clusters as defined by the similarity of the closest items across two clusters. By considering either interconnectivity or closeness only, these algorithms can select and merge the wrong pair of clusters. Chameleon's key feature is that it accounts for both interconnectivity and closeness in identifying the most similar pair of clusters. Chameleon finds the clusters in the data set by using a two-phase algorithm. During the first phase, Chameleon uses a graph partitioning algorithm to cluster the data items into several relatively small subclusters. During the second phase, it uses an algorithm to find the genuine clusters by repeatedly combining these subclusters.

1,966 citations


Cited by
More filters

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

30,199 citations



Book
18 Nov 2016
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

26,972 citations


Book
Jiawei Han1, Micheline Kamber2, Jian Pei2Institutions (2)
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,590 citations


Journal ArticleDOI
Sinno Jialin Pan1, Qiang Yang1Institutions (1)
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

13,267 citations


Network Information
Related Authors (5)
Michael Steinbach

156 papers, 12.5K citations

81% related
Anuj Karpatne

79 papers, 2.3K citations

80% related
Steven Klooster

81 papers, 4.8K citations

77% related
Stefan Liess

45 papers, 614 citations

75% related
Eui-Hong Han

37 papers, 5.3K citations

74% related
Performance
Metrics

Author's H-index: 95

No. of papers from the Author in previous years
YearPapers
202121
202027
201920
201820
201725
201621