scispace - formally typeset
Search or ask a question
Author

Vipin Kumar

Bio: Vipin Kumar is an academic researcher from University of Minnesota. The author has contributed to research in topics: Parallel algorithm & Cluster analysis. The author has an hindex of 95, co-authored 614 publications receiving 59034 citations. Previous affiliations of Vipin Kumar include University of Maryland, College Park & United States Department of the Army.


Papers
More filters
Proceedings ArticleDOI
01 Jan 2008
TL;DR: In this paper, the performance of a variety of similarity measures in the context of a specific data mining task is evaluated. But their relative performance has not been evaluated for all types of problems.
Abstract: Measuring similarity or distance between two entities is a key step for several data mining and knowledge discovery tasks. The notion of similarity for continuous data is relatively well-understood, but for categorical data, the similarity computation is not straightforward. Several data-driven similarity measures have been proposed in the literature to compute the similarity between two categorical data instances but their relative performance has not been evaluated. In this paper we study the performance of a variety of similarity measures in the context of a specific data mining task: outlier detection. Results on a variety of data sets show that while no one measure dominates others for all types of problems, some measures are able to have consistently high performance.

554 citations

Journal ArticleDOI
TL;DR: The theory-guided data science (TGDS) paradigm as mentioned in this paper is an emerging paradigm that aims to leverage the wealth of scientific knowledge for improving the effectiveness of data science models in enabling scientific discovery.
Abstract: Data science models, although successful in a number of commercial domains, have had limited applicability in scientific problems involving complex physical phenomena. Theory-guided data science (TGDS) is an emerging paradigm that aims to leverage the wealth of scientific knowledge for improving the effectiveness of data science models in enabling scientific discovery. The overarching vision of TGDS is to introduce scientific consistency as an essential component for learning generalizable models. Further, by producing scientifically interpretable models, TGDS aims to advance our scientific understanding by discovering novel domain insights. Indeed, the paradigm of TGDS has started to gain prominence in a number of scientific disciplines such as turbulence modeling, material discovery, quantum chemistry, bio-medical science, bio-marker discovery, climate science, and hydrology. In this paper, we formally conceptualize the paradigm of TGDS and present a taxonomy of research themes in TGDS. We describe several approaches for integrating domain knowledge in different research themes using illustrative examples from different disciplines. We also highlight some of the promising avenues of novel research for realizing the full potential of theory-guided data science.

532 citations

Proceedings ArticleDOI
01 Jun 1999
TL;DR: A new multilevel k-way hypergraph partitioning algorithm that substantially outperforms the existing state-of-the-art K-PM/LR algorithm for multi-way partitioning, both for optimizing local as well as global objectives.
Abstract: In this paper, we present a new multilevel k-way hypergraph partitioning algorithm that substantially outperforms the existing state-of-the-art K-PM/LR algorithm for multi-way partitioning, both for optimizing local as well as global objectives. Experiments on the ISPD98 benchmark suite show that the partitionings produced by our scheme are on the average 15% to 23% better than those produced by the K-PM/LR algorithm, both in terms of the hyperedge cut as well as the (K-1) metric. Furthermore, our algorithm is significantly faster, requiring 4 to 5 times less time than that required by K-PM/LR.

521 citations

Journal ArticleDOI
TL;DR: The quality of the produced partitions and orderings are comparable to those produced by the serial multilevel algorithm that has been shown to outperform both spectral partitioning and multiple minimum degree.

496 citations

Proceedings ArticleDOI
07 Nov 1998
TL;DR: This work focuses on developing new types of heuristics for coarsening, initial partitioning, and refinement that are capable of successfully handling multiple constraints that underlay many existing and emerging large-scale scientific simulations.
Abstract: Traditional graph partitioning algorithms compute a k-way partitioning of a graph such that the number of edges that are cut by the partitioning is minimized and each partition has an equal number of vertices. The task of minimizing the edge-cut can be considered as the objective and the requirement that the partitions will be of the same size can be considered as the constraint. In this paper we extend the partitioning problem by incorporating an arbitrary number of balancing constraints. In our formulation, a vector of weights is assigned to each vertex, and the goal is to produce a k-way partitioning such that the partitioning satisfies a balancing constraint associated with each weight, while attempting to minimize the edge-cut. Applications of this multi-constraint graph partitioning problem include parallel solution of multi-physics and multi-phase computations, that underlay many existing and emerging large-scale scientific simulations. We present new multi-constraint graph partitioning algorithms that are based on the multilevel graph partitioning paradigm. Our work focuses on developing new types of heuristics for coarsening, initial partitioning, and refinement that are capable of successfully handling multiple constraints. We experimentally evaluate the effectiveness of our multi-constraint partitioners on a variety of synthetically generated problems.

484 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations