scispace - formally typeset
Search or ask a question
Author

Virgil-Florin Duma

Bio: Virgil-Florin Duma is an academic researcher from Aurel Vlaicu University of Arad. The author has contributed to research in topics: Optical coherence tomography & Galvanometer. The author has an hindex of 20, co-authored 154 publications receiving 1195 citations. Previous affiliations of Virgil-Florin Duma include University of Rochester & The Institute of Optics.


Papers
More filters
Journal ArticleDOI
TL;DR: The three most common profiles of scanning functions for galvanometer-based scanners (GSs): the sawtooth, triangular and sinusoidal functions are analyzed and certain rules of thumb are deduced to make the best out of the galvoscanner.
Abstract: We analyze the three most common profiles of scanning functions for galvanometer-based scanners (GSs): the sawtooth, triangular and sinusoidal functions. They are determined experimentally with regard to the scan parameters of the input signal (i.e., frequency and amplitude). We study the differences of the output function of the GS measured as the positional error of the oscillatory mirror from the ideal function given by the input signal of the device. The limits in achieving the different types of scanning functions in terms of duty cycle and linearity are determined experimentally for the possible range of scan parameters. Of particular importance are the preservation of an imposed duty cycle and profile for the sawtooth function, the quantification of the linearity for the sinusoidal function, and the effective duty cycle for the triangular, as well as for the other functions. The range of scan amplitudes for which the stability of the oscillatory regime of the galvo mirror is stable for different frequencies is also highlighted. While the use of the device in certain scanning regimes is studied, certain rules of thumb are deduced to make the best out of the galvoscanner. Finally, the three types of scanning functions are tested with a Fourier domain optical coherence tomography (FD OCT) setup and the conclusions of the study are demonstrated in an imaging application by correlating the determined limits of the scanning regimes with the requirements of OCT.

93 citations

Journal ArticleDOI
TL;DR: This paper reports on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing.
Abstract: High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin.

69 citations

Journal ArticleDOI
08 Aug 2014
TL;DR: Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed and tested, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic, is demonstrated.
Abstract: Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated.

60 citations

Journal ArticleDOI
TL;DR: The effective duty cycle of galvanometer-based scanners (GSs) is studied with regard to three main parameters of the scanning process: theoretical/imposed duty cycle, scan frequency, and scan amplitude.
Abstract: We study experimentally the effective duty cycle of galvanometer-based scanners (GSs) with regard to three main parameters of the scanning process: theoretical/imposed duty cycle (of the input signal), scan frequency, and scan amplitude. Sawtooth and triangular input signals for the device are considered. The effects of the mechanical inertia of the oscillatory element of the GS are analyzed and their consequences are discussed in the context of optical coherence tomography (OCT) imaging. When the theoretical duty cycle and the scan amplitude are increased to the limit, the saturation of the device is demonstrated for a useful range of scan frequencies by direct measurement of the position of the galvomirror. Investigations of OCT imaging of large samples also validate this saturation, as examplified by the gaps/blurred portions obtained between neighboring images when using both triangular and sawtooth scanning at high scan frequencies. For this latter aspect, the necessary overlap between neighboring B-scans, and therefore between the corresponding volumetric reconstructions of the sample, are evaluated and implemented with regard to the same parameters of the scanning process. OCT images that are free of these artifacts are thus obtained.

56 citations

Journal ArticleDOI
TL;DR: In this article, different possible scanning functions of a galvanometer-based scanner (GS) were considered with an optimal profile for the user, i.e., symmetrical, linear on their active portions, and with fast stop-and-turn parts.
Abstract: We study different possible scanning functions of a galvanometer-based scanner (GS), considered with an optimal profile for the user, i.e., symmetrical, linear on their active portions, and with fast stop-and-turn parts. The scope is to obtain the function that provides the highest theoretical limit of the duty cycle of the device. From the equation of the oscillatory mirror, the active torque is obtained with regard to the scanning function. Several equations are studied for the stop-and-turn parts: polynomials of different orders and sinusoidal. We demonstrate that the choice has to be done between the two most advantageous scanning functions: linear plus parabolic and linear plus sinusoidal. The relationships between the characteristic parameters of the GS, i.e., stop-and-turn time interval, scan frequency and velocity, duty cycle, and maximum inertia torque are deduced and compared for these two functions. We demonstrate that, contrary to what is considered in the literature, the best function, i.e., the one that provides the highest duty cycle (and to obtain that, the lowest inertia torque, for minimum stop-and-turn time) is the linear plus parabolic function.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The principles of microscopy principles in light microscopy scanning techniques in electron microscopy and their applications in transmission/scanning and digital holographic microscopy are explained.
Abstract: principles and techniques of electron microscopy principles and techniques of electron microscopy electron microscopy and optics: general textbooks principles and techniques of electron microscopy principles and techniques of electron microscopy principles and techniques of digital holographic microscopy scanning electron microscopy cathodoluminescence of quartz introduction to transmission/scanning transmission principles and technique of fluorescence microscopy by m principles and techniques of electron microscopy: volume 1 principles of the phase contrast (electron) microscopy principles and techniques of electron microscopy lecture 1 the principles of microscopy principles in light microscopy scanning techniques in electron microscopy

677 citations

Journal ArticleDOI
TL;DR: This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors.
Abstract: This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.

233 citations

01 Jan 2016
TL;DR: Reading a book as this oral histology development structure and function and other references can enrich your life quality and help you to be better in this life.
Abstract: In undergoing this life, many people always try to do and get the best. New knowledge, experience, lesson, and everything that can improve the life will be done. However, many people sometimes feel confused to get those things. Feeling the limited of experience and sources to be better is one of the lacks to own. However, there is a very simple thing that can be done. This is what your teacher always manoeuvres you to do this one. Yeah, reading is the answer. Reading a book as this oral histology development structure and function and other references can enrich your life quality. How can it be?

154 citations