scispace - formally typeset
Search or ask a question
Author

Viswanathan Sasisekharan

Bio: Viswanathan Sasisekharan is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Hemagglutinin (influenza) & Helix. The author has an hindex of 39, co-authored 120 publications receiving 10583 citations. Previous affiliations of Viswanathan Sasisekharan include University of Madras & Hybridon, Inc.


Papers
More filters
Book ChapterDOI
TL;DR: This chapter considers the parameters that are required for an adequate description of a polypeptide chain and the mathematical method of utilizing these parameters for calculating the coordinates of all the atoms in a suitable frame of reference so that all the interatomic distances, and bond angles, can be calculated and their consequences worked out.
Abstract: Publisher Summary This chapter deals with the recent developments regarding the description and nature of the conformation of proteins and polypeptides with special reference to the stereochemical aspects of the problem. This chapter considers the parameters that are required for an adequate description of a polypeptide chain. This chapter focuses the attention on what may be called “internal parameters”—that is, those which can be defined in terms of the relationships among atoms or units that form the building blocks of the polypeptide chains. This chapter also provides an account of the mathematical method of utilizing these parameters for calculating the coordinates of all the atoms in a suitable frame of reference, so that all the interatomic distances, and bond angles, can be calculated and their consequences worked out. This chapter observes conformations in amino acids, peptides, polypeptides, and proteins.

2,802 citations

Journal ArticleDOI
TL;DR: An integrated biochemical, analytical and data mining approach demonstrates that HAs from the human-adapted H1N1 and H3N2 viruses, but not H5N1 (bird flu) viruses, specifically bind to long α2-6 sialylated glycans with this topology, which could explain why H 5N1 viruses have not yet gained a foothold in the human population.
Abstract: A switch in specificity of avian influenza A viruses' hemagglutinin (HA) from avian-like (alpha2-3 sialylated glycans) to human-like (alpha2-6 sialylated glycans) receptors is believed to be associated with their adaptation to infect humans. We show that a characteristic structural topology--and not the alpha2-6 linkage itself--enables specific binding of HA to alpha2-6 sialylated glycans and that recognition of this topology may be critical for adaptation of HA to bind glycans in the upper respiratory tract of humans. An integrated biochemical, analytical and data mining approach demonstrates that HAs from the human-adapted H1N1 and H3N2 viruses, but not H5N1 (bird flu) viruses, specifically bind to long alpha2-6 sialylated glycans with this topology. This could explain why H5N1 viruses have not yet gained a foothold in the human population. Our findings will enable the development of additional strategies for effective surveillance and potential therapeutic interventions for H5N1 and possibly other influenza A viruses.

409 citations

Journal ArticleDOI
TL;DR: This review provides structural insights into the oligosaccharide-protein interactions and discusses some key and challenging aspects of understanding GAG structure-function relationships.

379 citations

Journal ArticleDOI
TL;DR: Intermolecular association of short telomeric sequences reported here provides a possible model for chromosomal pairing and the formation of hairpin G quartet structure for the above sequences is supported by the enhanced electrophoretic mobility observed on non-denaturing polyacrylamide gels.
Abstract: The role of thymine residues in the formation of G-quartet structures for telomeric sequences has been investigated using model oligonucleotides of the type d(G4TnG4), with n = 1-4. Sequences d(G4T3G4) and d(G4T4G4) adopt a G-quartet structure formed by hairpin dimerization in 70 mM NaCl as judged by a characteristic circular dichroism signature with a 295 nm positive and 265 nm negative bands while d(G4TG4) adopts a parallel G-quartet structure like d(G12) which exhibits a strong positive band at 260 nm and a negative band at 240 nm. The sequence d(G4T2G4) exhibits a mixture of both conformations. The stability of hairpin G-quartet structures decreases with decrease in the number of intervening thymine residues. Potassium permanganate, a single strand specific probe has been used to establish the presence of loops composed of T residues in the hairpin G quartet structures formed by the oligonucleotides d(G4TnG4) with n = 2-4 in 70 mM NaCl. The formation of hairpin G quartet structure for the above sequences is further supported by the enhanced electrophoretic mobility observed on non-denaturing polyacrylamide gels. Human telomeric sequence d(TTAGGG)4 which showed enhanced electrophoretic mobility like Tetrahymena telomeric sequence d(T2G4)4 also exhibited a characteristic CD spectrum for a folded-back G-quartet structure. A detailed model for G-quartet structure involving hairpin dimer with alternating syn-anti-syn-anti conformation for the guanine residues both along the chain as well as around the G tetrad with at least two thymine residues in the loop is proposed. Intermolecular association of short telomeric sequences reported here provides a possible model for chromosomal pairing.

377 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The CHARMM (Chemistry at Harvard Macromolecular Mechanics) as discussed by the authors is a computer program that uses empirical energy functions to model macromolescular systems, and it can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations.
Abstract: CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a highly flexible computer program which uses empirical energy functions to model macromolecular systems. The program can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations. The operations that CHARMM can perform are described, and some implementation details are given. A set of parameters for the empirical energy function and a sample run are included.

14,725 citations

Journal ArticleDOI
TL;DR: The software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s is described, which is a very fast program for molecular dynamics simulation.
Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simulations. The package includes about 100 utility and analysis programs. GROMACS is in the public domain and distributed (with source code and documentation) under the GNU General Public License. It is maintained by a group of developers from the Universities of Groningen, Uppsala, and Stockholm, and the Max Planck Institute for Polymer Research in Mainz. Its Web site is http://www.gromacs.org.

13,116 citations

Journal ArticleDOI
TL;DR: Special efforts were made to allow for appropriate display and analysis of the sets of typically 20-40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, and identification and listing of short distances between pairs of hydrogen atoms.

7,111 citations

Journal ArticleDOI
TL;DR: The accessibility of atoms in the twenty common amino acids in model tripeptides of the type Ala-X-Ala are given for defined conformation and the larger non-polar amino acids tend to be more “buried” in the native form of all three proteins.

5,697 citations

Journal ArticleDOI
TL;DR: The AQUA and PROCHECK-NMR programs provide a means of validating the geometry and restraint violations of an ensemble of protein structures solved by solution NMR, and their outputs include a detailed breakdown of the restraint violations.
Abstract: The AQUA and PROCHECK-NMR programs provide a means of validating the geometry and restraint violations of an ensemble of protein structures solved by solution NMR. The outputs include a detailed breakdown of the restraint violations, a number of plots in PostScript format and summary statistics. These various analyses indicate both the degree of agreement of the model structures with the experimental dat, and the quality of their geometrical properties. They are intended to be of use both to support ongoing NMR structure determination and in the validation of the final results.

4,926 citations