scispace - formally typeset
Search or ask a question
Author

Vitaly L. Ginzburg

Other affiliations: Lebedev Physical Institute
Bio: Vitaly L. Ginzburg is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Cosmic ray & Superconductivity. The author has an hindex of 25, co-authored 89 publications receiving 7405 citations. Previous affiliations of Vitaly L. Ginzburg include Lebedev Physical Institute.


Papers
More filters
Book
01 Jan 1964
TL;DR: In this paper, an open-diagram technique is introduced which simplifies the calculation of absorptive parts of the conductivity tensor for long-wavelength electromagnetic waves in uniform, weakly interacting plasmas near equilibrium in the absence of external magnetic fields.
Abstract: Green's function techniques are used to treat the propagation of electromagnetic waves in uniform, weakly interacting plasmas near equilibrium in the absence of external magnetic fields. The frequency and the damping of electromagnetic waves in a medium are related to the local complex conductivity tensor, which is calculated by the diagrammatic techniques of modern field theory. Physical quantities are calculated in terms of a consistent many-particle perturbation expansion in powers of a (weak) coupling parameter. An open-diagram technique is introduced which simplifies the calculation of absorptive parts. For longwavelength longitudinal waves (i.e., electron plasma oscillations) it is found that the main absorption mechanism in the electron-ion plasma is the two-particle collision process appropriately corrected for collective effects and not the one-particle (or Landau) damping process. Electron-ion collisions produce a damping effect which remains finite for long wavelengths. The effect of electron-electron collisions vanishes in this limit. The absorption of transverse radiation is also considered; calculations for the electron-ion plasma are in essential agreement with the recent work of Dawson and Oberman. The results for the absorptive part of the conductivity tensor for long-wavelength electromagnetic waves in a plasma where the phase velocity au/k is much greater than the rms particle velocity is for the electron-ion plasma: O„O,~kgb C, ( )

1,428 citations

Book
01 Jan 1964

1,120 citations

Book
12 Mar 2014
TL;DR: In this article, the complex dielectric-constant tensor and normal waves in a medium are used to calculate the tensor tensor in a crystal, and a classification of the States of Mechanical Excitons is given.
Abstract: 1. Introduction.- 2. The Complex Dielectric-Constant Tensor ?ij(?,k) and Normal Waves in a Medium.- 3. The Tensor ?ij(?,k) in Crystals.- 4. Spatial Dispersion in Crystal Optics.- 5. Surface Excitons and Polaritons.- 6. Microscopic Theory. Calculation of the Tensor ?ij(?,k).- 7. Conclusion.- A.1 Crystal-Symmetry Notation.- A.2 Information from Space Group Theory.- A.2.1 Classification of the States of Mechanical Excitons.- Notation.- References.

706 citations

Book
01 Jan 1979

434 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transition metal dichalcogenides are about 60 in number as discussed by the authors, and two-thirds of these assume layer structures and can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions.
Abstract: The transition metal dichalcogenides are about 60 in number. Two-thirds of these assume layer structures. Crystals of such materials can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions. The transmission spectra of the family have been correlated group by group with the wide range of electrical and structural data available to yield useful working band models that are in accord with a molecular orbital approach. Several special topics have arisen; these include exciton screening, d-band formation, and the metal/insulator transition; also magnetism and superconductivity in such compounds. High pressure work seems to offer the possibility for testing the recent theory of excitonic insulators.

3,313 citations

01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations

Dissertation
01 Oct 1948
TL;DR: In this article, it was shown that a metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.
Abstract: IN two previous notes1, Prof. Max Born and I have shown that one can obtain a theory of superconductivity by taking account of the fact that the interaction of the electrons with the ionic lattice is appreciable only near the boundaries of Brillouin zones, and particularly strong near the corners of these. This leads to the criterion that the metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.

2,042 citations

Journal ArticleDOI
TL;DR: In this article, the theory of first order Fermi acceleration at collisionless astrophysical shock fronts is reviewed and it is argued that the wave amplitude is probably non-linear within sufficiently strong astrophysical shocks.

1,881 citations

Book
01 Jan 1981
TL;DR: In this article, the authors introduce high energy astrophysics in the context of galaxies and the origin of cosmic rays in our galaxy, as well as the acceleration of high energy particles in magnetic fields.
Abstract: Part I. Astronomical Background: 1. High energy astrophysics - an introduction 2. The stars and stellar evolution 3. The galaxies 4. Clusters of galaxies Part II. Physical Processes: 5. Ionisation losses 6. Radiation of accelerated charged particles and bremsstrahlung of electrons 7. The dynamics of charged particles in magnetic fields 8. Synchrotron radiation 9. Interactions of high energy photons 10. Nuclear interactions 11. Aspects of plasma physics and magnetohydrodynamics Part III. High Energy Astrophysics in our Galaxy: 12. Interstellar gas and magnetic fields 13. Dead stars 14. Accretion power in astrophysics 15. Cosmic rays 16. The origin of cosmic rays in our galaxy 17. The acceleration of high energy particles Part IV. Extragalactic High Energy Astrophysics: 18. Active galaxies 19. Black holes in the nuclei of galaxies 20. The vicinity of the black hole 21. Extragalactic radio sources 22. Compact extragalactic sources and superluminal motions 23. Cosmological aspects of high energy astrophysics Appendix References Index.

1,280 citations