scispace - formally typeset
Search or ask a question

Showing papers by "Vito Latora published in 2015"


Journal ArticleDOI
TL;DR: This work introduces a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph.
Abstract: Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein–protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein–protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein–genetic interactions, social, economical and transportation systems can be reduced by up to 75%. Multilayer networks have been used to capture the structure of complex systems with different types of interactions, but often contain redundant information. Here, De Domenico et al. present a method based on quantum information, to identify the minimal configuration of layers to retain.

557 citations


Journal ArticleDOI
TL;DR: This work introduces various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees and shows that real-world networks exhibit indeed nontrivial multiplex correlations.
Abstract: The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

238 citations


Journal ArticleDOI
TL;DR: In this article, a non-parametric method based on the mapping of a multidimensional time series into a multilayer network is presented, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network.
Abstract: Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

115 citations


Journal ArticleDOI
TL;DR: It is found that the leading universities form a cohesive clique among themselves and occupy brokerage positions between otherwise disconnected entities, and as the inequality in the distribution of funding grows over time, so does the degree of brokerage.
Abstract: Seeking research funding is an essential part of academic life. Funded projects are primarily collaborative in nature through internal and external partnerships, but what role does funding play in the formulation of these partnerships? Here, by examining over 43,000 scientific projects funded over the past three decades by one of the major government research agencies in the world, we characterize how the funding landscape has changed and its impacts on the underlying collaboration networks across different scales. We observed rising inequality in the distribution of funding and that its effect was most noticeable at the institutional level—the leading universities diversified their collaborations and increasingly became the knowledge brokers in the collaboration network. Furthermore, it emerged that these leading universities formed a rich club (i.e., a cohesive core through their close ties) and this reliance among them seemed to be a determining factor for their research success, with the elites in the core overattracting resources but also rewarding in terms of both research breadth and depth. Our results reveal how collaboration networks organize in response to external driving forces, which can have major ramifications on future research strategy and government policy.

69 citations


Journal ArticleDOI
TL;DR: This study proposes a novel method for measuring the similarity between articles through the statistical validation of the overlap between their bibliographies, and indicates that Electromagnetism and Interdisciplinary Physics are the two sub-fields in physics with the smallest percentage of missing citations.
Abstract: Citation networks have been widely used to study the evolution of science through the lenses of the underlying patterns of knowledge flows among academic papers, authors, research sub-fields, and scientific journals. Here we focus on citation networks to cast light on the salience of homophily, namely the principle that similarity breeds connection, for knowledge transfer between papers. To this end, we assess the degree to which citations tend to occur between papers that are concerned with seemingly related topics or research problems. Drawing on a large data set of articles published in the journals of the American Physical Society between 1893 and 2009, we propose a novel method for measuring the similarity between articles through the statistical validation of the overlap between their bibliographies. Results suggest that the probability of a citation made by one article to another is indeed an increasing function of the similarity between the two articles. Our study also enables us to uncover missing citations between pairs of highly related articles, and may thus help identify barriers to effective knowledge flows. By quantifying the proportion of missing citations, we conduct a comparative assessment of distinct journals and research sub-fields in terms of their ability to facilitate or impede the dissemination of knowledge. Findings indicate that knowledge transfer seems to be more effectively facilitated by journals of wide visibility, such as Physical Review Letters, than by lower-impact ones. Our study has important implications for authors, editors and reviewers of scientific journals, as well as public preprint repositories, as it provides a procedure for recommending relevant yet missing references and properly integrating bibliographies of papers.

36 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects.
Abstract: We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.

26 citations


Journal ArticleDOI
TL;DR: The results indicate that multiplexity should be appropriately taken into account when studying voter model dynamics, and that, in general, single-layer approximations might be not accurate enough to properly understand processes occurring on multiplex networks.
Abstract: We address the issue of the reducibility of the dynamics on a multilayer network to an equivalent process on an aggregated single-layer network. As a typical example of models for opinion formation in social networks, we implement the voter model on a two-layer multiplex network, and we study its dynamics as a function of two control parameters, namely the fraction of edges simultaneously existing in both layers of the network (edge overlap), and the fraction of nodes participating in both layers (interlayer connectivity or degree of multiplexity). We compute the asymptotic value of the number of active links (interface density) in the thermodynamic limit, and the time to reach an absorbing state for finite systems, and we compare the numerical results with the analytical predictions on equivalent single-layer networks obtained through various possible aggregation procedures. We find a large region of parameters where the interface density of large multiplexes gives systematic deviations from that of the aggregates. We show that neither of the standard aggregation procedures is able to capture the highly nonlinear increase in the lifetime of a finite size multiplex at small interlayer connectivity. These results indicate that multiplexity should be appropriately taken into account when studying voter model dynamics, and that, in general, single-layer approximations might be not accurate enough to properly understand processes occurring on multiplex networks, since they might flatten out relevant dynamical details.

19 citations


Journal ArticleDOI
TL;DR: This work introduces biased random walks on multiplex networks and provides analytical solutions for their long-term properties such as the stationary distribution and the entropy rate, and distinguishes between two subclasses of random walks.
Abstract: Biased random walks on complex networks are a particular type of walks whose motion is biased on properties of the destination node, such as its degree. In recent years they have been exploited to design efficient strategies to explore a network, for instance by constructing maximally mixing trajectories or by sampling homogeneously the nodes. In multiplex networks, the nodes are related through different types of links (layers or communication channels), and the presence of connections at different layers multiplies the number of possible paths in the graph. In this work we introduce biased random walks on multiplex networks and provide analytical solutions for their long-term properties such as the stationary distribution and the entropy rate. We focus on degree-biased walks and distinguish between two subclasses of random walks: extensive biased walks consider the properties of each node separately at each layer, intensive biased walks deal instead with intrinsically multiplex variables. We study the effect of different structural properties, including the number of layers, the presence and sign of inter-layer degree correlations, and the redundancy of edges across layers, on the steady-state behaviour of the walkers, and we investigate how to design an efficient exploration of the system. Finally, we apply our results to the case of a multidimensional social network and to a multimodal transportation system, showing how an appropriate tuning of the bias parameters towards nodes which are truly multiplex allows to obtain a good trade-off between a maximal entropy rate and a homogeneous sampling of the nodes of the network.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduce and study biased random walks on multiplex networks, graphs where the nodes are related through different types of links organized in distinct and interacting layers, and provide analytical solutions for their long-time properties, including the stationary occupation probability distribution and the entropy rate.
Abstract: Efficient techniques to navigate networks with local information are fundamental to sample large-scale online social systems and to retrieve resources in peer-to-peer systems. Biased random walks, i.e. walks whose motion is biased on properties of neighbouring nodes, have been largely exploited to design smart local strategies to explore a network, for instance by constructing maximally mixing trajectories or by allowing an almost uniform sampling of the nodes. Here we introduce and study biased random walks on multiplex networks, graphs where the nodes are related through different types of links organised in distinct and interacting layers, and we provide analytical solutions for their long-time properties, including the stationary occupation probability distribution and the entropy rate. We focus on degree-biased random walks and distinguish between two classes of walks, namely those whose transition probability depends on a number of parameters which is extensive in the number of layers, and those whose motion depends on intrinsically multiplex properties of the neighbouring nodes. We analyse the effect of the structure of the multiplex network on the steady-state behaviour of the walkers, and we find that heterogeneous degree distributions as well as the presence of inter-layer degree correlations and edge overlap determine the extent to which a multiplex can be efficiently explored by a biased walk. Finally we show that, in real-world multiplex transportation networks, the trade-off between efficient navigation and resilience to link failure has resulted into systems whose diffusion properties are qualitatively different from those of appropriately randomised multiplex graphs. This fact suggests that multiplexity is an important ingredient to include in the modelling of real-world systems.

11 citations


Proceedings ArticleDOI
01 Jan 2015
TL;DR: In this article, different topological structures and geometric shapes of cities are investigated, focusing on the efficiency of cities themselves, and their resilience, where seismic events are simulated for each investigated urban geometry, referring to the most common shapes existing worldwide.
Abstract: Abstract. People living in a city represent the most important agents of the urban system. In fact, people organize bits of the city, while organizing their own lives, hence directly influencing much of the city structure, from both a human point of view and a topological one. Such a self-organizing process reflects on both safety and life quality of citizens and efficiency of city services. As a result, in order to better manage a city one should know its inhabitants’ behaviour and its topological configuration too. An ambitious goal that can be pursued in the sense of complex networks theory approach, studying the urban centre as a hybrid social-physical network made by both human and physical components (HSPN)[1]. In this study different topological structures and geometric shapes of cities are investigated, focusing on the efficiency of cities themselves, and their resilience. Moreover, due to the current increasing risk of natural and human-induced disaster threatening local communities, urban societies are suffering a gradual reduction of their actual and potential resilience, as their ability to cope and withstand with external events. To this purpose, seismic events are simulated for each investigated urban geometry, referring to the most common shapes existing worldwide. A novel systemic measure of the expected damage state is here defined, which allows for a vectorial measure of the city efficiency in its entirety. Urban resilience is assessed as an integral measure, before, during and after an extreme event occurs. Thence, a recovery strategy is hypothesized and the efficiency of the HSPN network and the resilience of the city are then evaluated and compared in a timediscrete analysis.

8 citations


Posted Content
TL;DR: Examination of funded projects in the past three decades reveals how collaboration networks undergo previously unknown adaptive organisation in response to external driving forces, which can have far-reaching implications for future policy.
Abstract: Research projects are primarily collaborative in nature through internal and external partnerships, but what role does funding play in their formation? Here, we examined over 43,000 funded projects in the past three decades, enabling us to characterise changes in the funding landscape and their impacts on the underlying collaboration patterns. We observed rising inequality in the distribution of funding and its effect was most noticeable at the institutional level in which the leading universities diversified their collaborations and increasingly became the knowledge brokers. Furthermore, these universities formed a cohesive core through their close ties, and such reliance appeared to be a key for their research success, with the elites in the core over-attracting resources but in turn rewarding in both research breadth and depth. Our results reveal how collaboration networks undergo previously unknown adaptive organisation in response to external driving forces, which can have far-reaching implications for future policy.